
Using Automated Program Repair for Evaluating the
Effectiveness of Fault Localization Techniques

Yuhua Qi, Xiaoguang Mao
∗

, Yan Lei, and Chengsong Wang
School of Computer

National University of Defense Technology, Changsha, China
{yuhua.qi, xgmao, yanlei}@nudt.edu.cn jameschen186@gmail.com

ABSTRACT
Many techniques on automated fault localization (AFL) have
been introduced to assist developers in debugging. Prior stud-
ies evaluate the localization technique from the viewpoint
of developers: measuring how many benefits that develop-
ers can obtain from the localization technique used when
debugging. However, these evaluation approaches are not
always suitable, because it is difficult to quantify precisely
the benefits due to the complex debugging behaviors of de-
velopers. In addition, recent user studies have presented that
developers working with AFL do not correct the defects more
efficiently than ones working with only traditional debugging
techniques such as breakpoints, even when the effectiveness
of AFL is artificially improved.

In this paper we attempt to propose a new research di-
rection of developing AFL techniques from the viewpoint of
fully automated debugging including the program repair of
automation, for which the activity of AFL is necessary. We
also introduce the NCP score as the evaluation measurement
to assess and compare various techniques from this perspec-
tive. Our experiment on 15 popular AFL techniques with 11
subject programs shipping with real-life field failures presents
the evidence that these AFL techniques performing well in
prior studies do not have better localization effectiveness ac-
cording to NCP score. We also observe that Jaccard has the
better performance over other techniques in our experiment.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.3 [Software Engineering]: Software Engineering—Cod-
ing Tools and Techniques

General Terms
Experimentation, Measurement

∗The corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’13, July 15-20, 2013, Lugano, Switzerland
Copyright 2013 ACM 978-1-4503-2159-4/13/07 ...$15.00.

Keywords
Fault localization, automated program repair, automated
debugging

1. INTRODUCTION
Automated fault localization (AFL) techniques are devel-

oped to reduce the effort of software debugging, which is
well known to be frustrating, and often time-consuming [34].
Rather than attempting to pinpoint and suggest a fix for a
bug, most existing techniques on AFL give the programmer
suggestions about likely fault locations, such as a suspect
list (ranking program entities according to their likelihood of
containing the fault) produced by statistical approaches, or
a small fraction of code (to which failure cause is narrowed
down) generated by experimental approaches [25]. Since
lots of techniques have been presented in the past decade,
one popular research area is to evaluate and compare the
effectiveness of various AFL techniques. In addition, when a
novel AFL technique is proposed, it is a common practice to
evaluate the effectiveness of this technique, and present the
advantage by comparing it with other AFL techniques [3].

Much existing literature [32, 20, 3, 14] evaluates the ef-
fectiveness of AFL from the viewpoint of developers, that
is, measuring how many benefits that developers can obtain
from the AFL technique used when debugging. To quantify
the benefits, much existing work evaluates the effectiveness
according to the percentage of the program code that needs
to be examined before the faults are identified, which is re-
ferred to as the EXAM score [32, 3, 33]. Obviously, a lower
EXAM score indicates a better localization effectiveness.
This kind of evaluation measurement, however, is based on
the strong assumption of “perfect bug detection” that exam-
ining a faulty statement in isolation is enough for a developer
to understand and eliminate the bug. Unfortunately, this
simplistic view of the debugging process does not hold in
practice, because understanding the root cause of a failure for
developers typically involves complex activities [21]. Hence,
existing evaluation approaches are not always suitable in
practice due to this strong assumption.

What is worse, given the maturity of the field of AFL, the
fact that most developers are still unwilling to debug faulty
programs through existing fault localizers [34] results in the
natural doubt about the rationality of current evaluation
measurement. Actually, to our knowledge most developers
are more likely to proceed using traditional debugging such
as breakpoints (which can provide data values for interesting
statements to assist fault understanding), and then analyze
the possible reason through complex human experience abil-

ity. This mechanism is most probably much more efficient,
when compared to debugging through long lists of unrelated
suspicious locations with small chances of spotting the defect.
Furthermore, the real-life user studies presented in [21] has
suggested that statistical approaches were no more effective
than traditional debugging for complex task, even when using
an artificially-high rank. The current evaluation approach
preferring a lower EXAM to benefit the developers (most
of who, in practice, does not use AFL techniques at all so
far), however, still guides many researchers to just focus on
statement selection and ranking.

In contrast, for fully automated debugging including the
program repair of full automation [11], the activity of AFL
is most often necessary especially when automating the re-
pair of large-scale programs. Recent advances in the area
of automated program repair [16, 30, 5] enable the faulty
programs to be automatically repaired by modifying some
statements according to specified repair rules. For a concrete
faulty program, the effectiveness of AFL techniques, which
is used to track down the possible faulty statements, will be
the dominant factor affecting the repair effectiveness when
the repair rules have been already specified.

Although recent work [16, 30, 5] on automated program
repair has noticed the important influence caused by the AFL
activity, there is no detail discussion on this kind of informa-
tion. For instance, GenProg [17, 16], a state-of-the-art tool
for automated C program repair, uses one very simple scheme
to compute the weight value, which is similar to the term
of suspiciousness value in statistical localization techniques,
for each statement of target program; the probability of each
statement being selected for modification depends on its
weight value. Although the authors in most recent work on
GenProg [16] declared that “Other fault localization schemes
could potentially be plugged directly into GenProg”, they
did not discuss the effectiveness difference between popular
AFL techniques such as Tarantula and Jaccard.

Given the increasing advances on automated program re-
pair and the distinct way of using localization information
against developers (see Section 3.2), developing the AFL
technique aiming to assist effectively program repair (not
developers) is pressing. As the first step, in this paper we
present an evaluation measurement to evaluate the effective-
ness of AFL from the viewpoint of fully automated debugging
(including the repair process of full automation). Specifically,
we evaluate the effectiveness of one AFL technique according
to the repair effectiveness guided by the localization tech-
nique. We refer to the repair effectiveness as the number of
candidate patches generated before a valid patch is found in
the repair process (NCP); the lower NCP score, the better
effectiveness of the used AFL technique. Based on NCP, we
can justify the advantage of one specified AFL technique
by presenting the improved effect size over other techniques
through rigorous statistic approach such as A-test.

For maximum applicability we built GenProg-FL, a tool
which can automatically repair faulty programs like GenProg
and have the ability of accepting the guidance of existing
AFL techniques, and then evaluated the effectiveness of 15
popular AFL techniques by running GenProg-FL to repair
11 real-life programs coming with field failures [13], the
failures occur after deployment. The result data indicate
that we can identify the effectiveness difference between
various AFL techniques according to the NCP score. We
also observed that 1) Ochiai did not always perform better

over either Jaccard or Tarantula, which is inconsistent with
prior empirical studies [1], 2) neither Optimal p or Russel rao
performed better over other 13 techniques, although the two
techniques have been theoretically proven to be optimal
under the evaluation measurement of EXAM [32, 20].

Overall, the contributions of this paper can be summarized
as follows:

• The first to present the effectiveness evaluation for AFL
techniques from the viewpoint of fully automated de-
bugging (Section 3). Unlike developers who are more
likely to prefer traditional debugging techniques such
as breakpoints, for automated program repair (at the
source code level) the activity of tracking down the
faulty code snippet is most often necessary. Thus, de-
veloping the corresponding AFL techniques to improve
the repair effectiveness is more pressing.

• The evaluation measurement in term of NCP for eval-
uating and comparing the effectiveness of various AFL
techniques (Section 3.4). A lower NCP score indicates
a better localization effectiveness.

• An effectiveness evaluation of 15 popular AFL tech-
niques by running GenProg-FL to automatically repair
11 subject programs shipping with real-world field fail-
ures (Section 4). Result data show that the techniques
that perform well in existing studies do not have the
lower NCP score, justifying the necessity of studying
the AFL from the viewpoint of fully automated debug-
ging. In addition, we also find that Jaccard performs
at least as good as the other 14 investigated techniques,
with the effectiveness improvement up to “large” effect
size using A-test.

2. BACKGROUND

2.1 Automated Fault Localization (AFL)
AFL techniques are originally proposed to provide some

information to reduce the effort of debugging activity. Al-
though there are many techniques on AFL presented in the
past decades, these techniques can be divided into two cate-
gories – statistical approaches and experimental approaches
[25]. Statistical approaches, also called spectrum-based ap-
proaches [15, 19, 20, 32], rank each program entity according
to their suspiciousness of being faulty. Although the program
entity can be referred to as different terms such as statement,
branch, and basic block, the term of statement is most often
studied. The suspiciousness value of each program entity is
computed by analyzing the program profile, which can be
observed by executing a large number of failed and passed
test cases. Based on either different designs of suspiciousness
computation formulas under the same program profile or the
different program profiles collected, many AFL techniques
on statistical approaches, such as Tarantula [15], Jaccard [9],
and predicate-based technique [19], are introduced.

Unlike statistical approaches requiring lots of testing execu-
tions to collect the program profile information, experimental
approaches [35] attempt to narrow down the defective code
to a small set of program entity by generating additional
executions. For instance, the technique of delta debugging
[35], one representative of experimental approaches, can nar-
row down failure causes up to 0.2% of the original source
code [8]. Although experimental approaches have the ability

of precisely locating the defective code, there exists a risk
that program behaviors are changed in a way that the orig-
inal program cannot perform forever due to, for example,
unsuitable input mutation.

Both statistical and experimental approaches are developed
from the viewpoint of developers. Especially for statistical
approaches, they focus on only the rank of faulty statements
regardless of the absolute suspiciousness values of program
statements. The effectiveness of these AFL techniques at
assisting the technique on automated program repair has
been not studied so far. Our work in this paper preliminarily
investigates this question.

2.2 The Effectiveness Evaluation of AFL
With more and more AFL techniques being proposed, one

popular research area is to evaluate and compare the ef-
fectiveness of various AFL techniques. In all these studies,
both empirical approaches [3, 14] and theoretical approaches
[20, 32] were conducted to investigate and evaluate the AFL
techniques. For empirical approaches, researchers used the
same experimental setup and benchmarks, such as Siemens
programs and Space program, to compare the effectiveness of
several AFL techniques. For theoretical approaches, which
are the recent advances on the effectiveness evaluation, re-
searchers attempted to study the performance of various
AFL techniques from a formally theoretical perspective; in
particular, studies in [32] have formally proved that some
AFL techniques, such as Naish1 and Naish2, are equivalent,
and some AFL techniques such as Tarantula always perform
better than another techniques such as Jaccard.

Majority of these studies, either through empirical ap-
proaches or through theoretical approaches, used the same
evaluation measurement of EXAM or its equivalent. Namely,
they prefer these AFL techniques that can give the faulty
statement higher priority under the assumption of “perfect
bug detection”, which means that examining a faulty state-
ment in isolation is enough for a developer to understand and
eliminate the bug. Although this assumption has actually
been used by the AFL community, it does not normally hold
in practice, because understanding the fault causing a failure
typically involves many complex activities [21]. In addition,
AFL techniques are originally introduced to provide assistant
information to the developers, to what extent can existing
techniques actually benefit the developers has been ignored
[32]. In fact, although AFL techniques have been developed
almost 30 years since one of the first AFL techniques was
presented, developers still rarely use the AFL tools to debug
faulty programs. Thus, given the maturity of AFL [34], it is
reasonable to doubt about the advantage of AFL compared
to traditional debugging techniques from the viewpoint of
developers.

In addition, although the activity of AFL is necessary
for automated program repair, to our knowledge there ex-
ists no AFL technique developed with goal of improving
the assistant effectiveness for it. In this paper we propose
another research direction on AFL: developing techniques
from the viewpoint of fully automated debugging; we also
introduce the NCP measurement to evaluate the localization
effectiveness accordingly.

2.3 Automated Program Repair
In this paper, we refer to the concept of automated pro-

gram repair as automatically fixing faults in source code,

not binary files or run-time patching. Automated program
repair, in general, is a three-step procedure: fault localiza-
tion, patch generation and patch validation. Given a bug
reported by some user, in order to repair the faulty program
automatically, suspicious faulty code snippet causing the
bug is first identified by AFL techniques. Once the faulty
code snippet is located, lots of candidate patches can be
produced by modifying that code snippet, according to spe-
cific repair rules based on either evolutionary computation
[16, 17, 5, 4] or code-based contacts [22, 29]. To check that
whether one candidate patch is valid or not, there are two
main approaches on assessing patched program correctness:
formal specifications and test suits. For specifications, al-
though precise and complete formal specifications have the
ability of guaranteeing that the valid patch does work well
on the defective program, formal specifications are rarely
available despite recent advances in specification mining [18].
Thus, test suits are most often used to validate the patch
effectiveness.

Automated repair techniques have received considerable
recent research attention. Guided by genetic programming,
GenProg has the ability to repair programs requiring not
any specifications [16]. AutoFix-E [30] can repair programs
but requires for the contracts in terms of pre- and post-
conditions. JAFF [5] tries to automatically correct the faulty
java programs using an evolutionary approach. AFix [12]
focuses on the repair for single-variable atomicity violations.
PHPRepair [26] can automatically fix HTML generation
Errors in php applications through string constraint solving.

Collectively, these advances on automated program repair
have pushed forward the state of the art in completely auto-
mated debugging. Unlike manual debugging by developers,
for automated program repair, the activity of AFL, identify-
ing the program statement(s) responsible for the correspond-
ing fault, is necessary to constrain the fixing operations to
operate only on the region of the program that is relevant to
the fault. Intuitively, the accuracy of used AFL technique
will drastically influence the repair effectiveness, but existing
work only focuses on the effectiveness evaluation of AFL
techniques from the viewpoint of developers, and there is no
work on the influence analysis of these techniques from the
viewpoint of fully automated debugging, to our knowledge.

3. OUR APPROACH
In this section we first give a description of insight overview

on our evaluation approach, and then describe the evaluation
detail about our approach. Finally, we present the evaluation
measurement of NCP to assess the effectiveness of AFL
techniques.

3.1 Overview
The insight of our approach is motivated by the fact that

the effectiveness of used AFL techniques has the important
impact on the repair effectiveness in automatically repair-
ing the faulty programs. As described in Section 2.3, for
automated program repair, the repair process is a three-step
procedure: locating the program fault (fault localization);
generating one candidate patch in light of some repair rules
(patch generation); validating the patch through test suits in
term of regression testing (patch validation). For the second
step (patch generation), according to specified fix rules, such
as evolutionary computation [16, 5] and code-based contacts
[29], lots of candidate patches are produced by modifying

the constrained code region. This code region, in fact, is
considered as the defective code snippet causing the fault,
and is located through AFL techniques. Obviously, the more
accuracy the used fault localization is, the better effectiveness
the repair process will perform when the repair rules have
been specified.

In the context of automated program repair, the better
effectiveness can be referred to as that the fewer invalid
patches are produced before a valid patch is found. We
consider a patch invalid when the patch fails to pass the
regression testing in the patch validation step. Since AFL
with better effectiveness should have the ability to enhance
the repair effectiveness by providing more useful localization
information, we can also evaluate the effectiveness of AFL
by measuring the corresponding repair effectiveness.

Evaluating the effectiveness of AFL technique from the
viewpoint of fully automated debugging is very important
and useful for the area of AFL and automated program re-
pair. Given recent advances on automated program repair,
it is pressing that developing the AFL techniques aiming at
providing assistant information when automating the pro-
gram repair. Our work in this paper will address the problem
of how to evaluate the effectiveness when some new AFL
techniques are proposed in the future.

3.2 Evaluation Framework
Before the description of our evaluation framework in de-

tail, we first discuss about how the fault information provided
by AFL is used in the process of automated program repair.
Most existing techniques on automated program repair use
randomized algorithms, such as evolutionary computation
[16, 5], to select some statements as the target for modifi-
cation. The probability pb of a statement being selected is
computed according to the suspiciousness value of the state-
ment provided by AFL. Take GenProg, a state-of-the-art
tool for automated C program repair, for instance, the suspi-
ciousness value sp of each statement s is computed through
a simple technique similar to statistical approaches: for a
program P , a statement never visited by any test case has
the sp value of 0; a statement visited only by negative test
case which reproduces the failure has the high value of 1.0; a
statement visited both by positive and negative test cases is
given the moderate value of 0.1. For each statement s ∈ P ,
the corresponding probability pb of s being selected is com-
puted through the formula: pb = sp ∗ mute, where mute
represents the global mute probability set for initialization.

Obviously, AFL techniques guide the technique on auto-
mated program repair in a distinct way against manually
debugging by developers. For developers, they center on only
the ranking of faulty statements rather than the absolute sus-
piciousness values [32]. In contrast, for automated program
repair, the absolute suspiciousness value of each statement is
one determinant of the repair effectiveness. The bigger sus-
piciousness values of faulty statements as well as the smaller
values of other statements, the better repair effectiveness,
because the probability pb of a statement s being selected is
computed according to sp rather than the ranking.

In light of mentioned discussion, we present our approach
of evaluating the accuracy of fault localization through au-
tomated program repair. To fairly compare each presented
AFL technique, we should first construct a repair framework
with some specific repair rules [16, 5, 29]; the framework
should provide the interface for accepting the outputs of

various AFL techniques. Second, each fault localization tech-
nique, with the goal of assisting the techniques on automated
program repair rather than developers, should ensure that
the final output meets the interface format provided by the
repair framework. Specifically, suppose that the source code
of a faulty program P is constructed from a set of statements
S = {s1, s2, · · · , sn}, then, the right output format should
be a list like that:

List = {(s1, sp1), (s2, sp2), · · · , (sn, spn)}, 0 ≤ sp ≤ 1,

where sp represents the suspiciousness value of a statement s,
the constraint of 0 ≤ sp ≤ 1 is used to simplify the computa-
tion of probability pb. In fact, this output format is similar as
the normalized ranking list outputted by statistical fault lo-
calization techniques. For the experimental techniques which
output the defective code snippet Ssub = {sd, sg, · · · , sw}, we
can obtain this kind of List by assigning the value 1 to sp of
each statement s ∈ Ssub and 0 for the remaining statements.
At last, the repair framework tries to repair automatically
the faulty program by modifying some statements in light of
specific repair rules; the statements with higher suspicious-
ness values will have more chances of being modified. We
rank various fault localization techniques according to the
guide effectiveness in term of the repair effectiveness.

3.3 Framework Implementation: GenProg-FL
To demonstrate the feasibility of our evaluation approach,

we have implemented the framework by building GenProg-
FL, a tool that has the ability of repairing automatically C
programs. GenProg-FL is the modification version of GenP-
rog1 [16] by adding the interface for accepting the localization
information on the fault. We selected GenProg for the reason
that it is almost the only state-of-the-art automated repair
tool having the ability of fixing real-world, large-scale C
faulty programs; literature [10] also used GenProg as the sole
tool to study patch maintainability.

3.4 Evaluation Measurement
As described earlier, we can evaluate the effectiveness of

one AFL technique by measuring the repair effectiveness
of GenProg-FL guided by this AFL technique. In general,
the bigger suspiciousness values of faulty statements as well
as the smaller values of other statements in the List pro-
duced by the AFL technique, the better repair effectiveness of
GenProg-FL. Theoretically, we can evaluate the effectiveness
of AFL by analyzing only the List; this way of evaluation
measurement is similar to the traditional measurement of
EXAM, which evaluates the effectiveness by observing the
rank of faulty statements in ranking list produced by AFL.
Unfortunately, this evaluation measurement, however, suffers
from two problems. First, finding precisely the faulty state-
ments is often time-consuming or impossible [27], especially
for real-life, complex faults. For instance, for the real-life php

bug presented in [10, p.178], there are two distinct patches
affecting even different functions code, resulting in the dif-
ficulty in making the decision on where the actually faulty
statements locate.

Second, it is still difficult to compare the effectiveness
between two AFL techniques in some cases, even when we
have supposed that faulty statements could be precisely
tracked down. For instance, suppose that for the same faulty

1Available: http://dijkstra.cs.virginia.edu/genprog/

program P with the actually faulty statement of s3, the
ranking lists:

Rank1 = {(sj , 1), (sp, 0.9), (s3, 0.8), · · · },

Rank2 = {(sj , 1), (sp, 0.8), (s3, 0.7), · · · },

which are produced by two statistical AFL techniques of
AFL1 and AFL2, respectively. The two techniques are equiv-
alent according to the EXAM measurement. Although AFL1

produces bigger suspiciousness value of s3, which improves
the probability of s3 being selected for modification, the
bigger value of sp will also improves the probability of sp
being wrongly selected for modification, increasing the risk
of introducing unexpected side effect.

In our work we measure the repair effectiveness of GenProg-
FL according to the Number of Candidate Patches (NCP)
generated before a valid patch is found in the repair pro-
cess. When the global mute rate mute is specified, the lower
NCP score can be observed in the repair process, the better
repair effectiveness can be performed by GenProg-FL; and
the better repair effectiveness indicates a better localization
effectiveness of AFL technique used by GenProg-FL. Mea-
suring precisely the NCP for one AFL technique, however, is
difficult because the NCP is most probably different for each
run of GenProg-FL due to the use of randomized algorithm
(i.e., genetic programming). Hence, we use statistical analy-
sis, including nonparametric Mann-Whitney-Wilcoxon test
and A-test, to evaluate and compare various AFL techniques.
We defer discussing the details to Section 5.1.

4. EXPERIMENTAL DESIGN
To justify the ability of GenProg-FL to identify the ef-

fectiveness of various AFL techniques, in our experiment
we use GenProg-FL to repair 11 real-life faulty programs
coming with field failures, under the separate guidance of
15 popular statistical AFL techniques. This experiment also
plans to investigate whether the conclusions drawn under the
evaluation measurement of EXAM still hold according to
NCP measurement. In addition, experimental results present
some useful advices on selecting some AFL techniques from
existing ones to effectively guide the repair process before
some more effective AFL techniques, which can have better
guidance effectiveness on automated program repair, occur
in the future.

4.1 Research Questions
Our experimental evaluation plans to addresses the follow-

ing Research Questions:

RQ1: Do the AFL techniques performing well under the
evaluation measurement of EXAM still have good per-
formance according to NCP measurement?

Prior empirical studies [1] have shown that Ochiai always
performs better than the techniques of Jaccard and Taran-
tula. Furthermore, recent theoretical analysis proved that
Optimal p (also called Naish in [32]) and Russel rao are the
maximal AFL techniques in the sense that the two AFL tech-
niques are strictly “better” than other statistical techniques
according to the EXAM measurement. Then, RQ1 asks
whether these “better” AFL techniques behave similarly in
our experiment based on the NCP measurement.

RQ2: Does there exist some AFL technique(s) performing
better over other techniques, according to NCP score?

Majority of existing AFL techniques were developed from
the viewpoint of developers on the strong assumption of “per-
fect bug detection”. Namely, most of these techniques aim
to improve the rank of faulty statement, regardless of the
absolute suspiciousness value, which plays an important part
on the effectiveness evaluation based on NCP. Nevertheless,
RQ2 plans to investigate whether there is any existing AFL
technique performing better according to the NCP measure-
ment. If so, we will suggest that the techniques on automated
program repair should use the AFL technique(s) to guide the
repair process before some more effective AFL techniques
are proposed in the future.

RQ3: If so, to what extent can the AFL technique(s) per-
form better on the improvement than other techniques?

If there exists some AFL technique(s) having better perfor-
mance, then RQ3 concerns the magnitude of the improve-
ment in term of effect size (scientific significance). Obviously,
we prefer the AFL techniques which have the significant
effectiveness improvement over other techniques.

4.2 Subject Programs
In this experiment, we selected the subject programs used

in the most recent work [16] on GenProg as the experimental
benchmarks2, all of which are written in C language and are
different real-world systems with real-life bugs from different
domains. These programs come with different sizes of positive
test cases ranging from 12 to 8,471, which facilitates the
application of AFL. In [2] Abreu and colleagues found that
including more than 20 positive test cases has minimal effects
on the effectiveness of AFL techniques. That is, chance is
that the effectiveness of studied AFL techniques is unstable
when target programs come with less than 20 positive test
cases. To remove this instability and compare each technique
fairly, We exclude gzip and lighttpd programs, because
there is too few positive test cases (no more than 10 ones)
actually used in both gzip and lighttpd programs, although
more test cases were listed in [16].

For the fbc program we have the compilation trouble
when we try to compile the program. We also exclude the
gmp programs and 9 versions of libtiff programs, because
we found that there exists much less similarity3 between
negative and positive test cases, which will also affect the AFL
accuracy [7]. At last, we select the remaining programs, i.e.,
libtiff, python, php, and wireshark, as target programs
used in the experiment.

For php which equips with too many test cases, several
minutes are needed for validating one patched program, which
will result in time-consuming repair process. Thus, complete
experimental evaluation on all the php programs can take
too much time (see [16, Table II]); the authors in [16] used
Amazon’s EC2 cloud computing infrastructure including
10 trials in parallel for their experiment. What is worse,
in our experiment, for each subject program we need 15
times more computing resource compared to the experiment

2https://church.cs.virginia.edu/genprog/archive/genprog-
105-bugs-tarballs/
3Specifically, we consider that a positive test case lacks simi-
larity when it even does not go through the source code file
(i.e., .c file) which contains the fault causing the failure.

Table 1: Subject Programs
Program LOC Test Cases Version Bug Description

libtiff 77,000 78

bug-10a4985-5362170 Sanity check error

bug-0fb6cf7-b4158fa Program crash

bug-01209c9-aaf9eb3 Incorrect return

bug-5b02179-3dfb33b Assertion failure

bug-d39db2b-4cd598c Generated wrong file

bug-4a24508-cc79c2b Output error

bug-6f9f4d7-73757f3 Sanity check error

bug-0860361d-1ba75257t Assertion failure

python 407,000 303 bug-69783-69784 Year 2000 issues

php 1,046,000 4,986 bug-309892-309910 Incorrect output

wireshark 2,814,000 53 bug-37112-37111 Memory leak

in [16], because the effectiveness of all the 15 investigated
AFL techniques need to be statistically observed. Given the
expensive testing computation, we randomly select one faulty
php version without any bias. For python and wireshark,
there exists only one version having been repaired successfully
by GenProg in [16] for each program.

In total, Table 1 describes our subject programs in detail,
and we spent about one and a half month on running our
experiment on three computers in parallel without break.
The LOC column lists the scale of each subject program in
term of lines of code, and the last three columns give the
size of positive test cases, the version information, and bug
description. Note that we got these test cases by running
the original test cases (provided by [16]) against the corre-
sponding programs and eliminating bad ones for which some
failure occurs. We assigned one negative test case for each
subject program to reproduce the bug.

4.3 Investigated AFL Techniques
In our experiment, we investigate 15 statistical AFL tech-

niques, which includes most of popular techniques on AFL.
We select the 14 techniques from the literature [20, 32], in
which 30 statistical AFL techniques are studied; other 16
techniques are eliminated because each of them is equiva-
lent to some technique included by the 14 ones [32]. The
more details on the definition of selected techniques in our
experiment can be found in [20, 32]. As described earlier,
all the 14 techniques are developed to improve the ranking
of faulty statements from the viewpoint of developers. We
also use the AFL technique used by GenProg as the baseline
technique in our experiment.

In addition, GenProg-FL requires that the output of used
AFL technique have the format like List described in Section
3.2. Namely, the suspiciousness value sp of each statement
must meet the constraint of 0 ≤ sp ≤ 1. Some AFL tech-
niques, however, do not meet the constraint. For instance,
the value of sp in ranking list produced by Wong3 technique
can be negative for some statements. Hence, to ensure that
investigated AFL techniques work well with GenProg-FL,
we preprocess the output of each AFL technique in a way of
normalizing these suspiciousness values. Specifically, suppose
that the rank list Rank is produced by one AFL technique,
and Rank = {(sj , spj), (sp, spp), · · · , (sn, spn)}, where s and
sp represent the program statement and the corresponding

suspiciousness value, respectively. Then, we can get the List
by preprocessing Rank:

List = {(sj ,
spj −min(sp)

max(sp)−min(sp)
), (sp,

spp −min(sp)

max(sp)−min(sp)
),

· · · , (sn,
spn −min(sp)

max(sp)−min(sp)
)},

where min(sp) and max(sp) represent the minimal and max-
imal value of sp in Rank. At last, List meeting the format
requirement of GenProg-FL is used to assist GenProg-FL
to track down the faulty statements. Note that this nor-
malization process does not change the rank order of each
statement in Rank. That is, List is equivalent to Rank in
term of EXAM measurement.

4.4 Experimental Setup
For the purposes of comparison, for each AFL technique,

we separately ran GenProg-FL to repair 11 subject programs
with the guidance of AFL. All the experimental parameters
for GenProg-FL in our experiment are similar to those set-
tings in [16]: we limited the size of the population of first
generation to 40 and remaining generations to 80, and a max-
imum of 10 generations for each repair process; the global
mute rate is set to 0.01. We considered that GenProg-FL fails
to repair one subject program for one repair trial if the valid
patch is not found within 10 generations. We recorded only
these trials which are successful to find the valid patches.

As described in Section 3.4, we use statistical analysis,
which requires many runs to ensure high confidence level,
to evaluate and compare the effectiveness of the 15 AFL
techniques. Hence, in our experiment, for one concrete sub-
ject program, we have 100 runs of GenProg-FL according to
the same AFL technique. Namely, for each AFL technique,
totaling 100 runs of GenProg-FL are required for one subject
program; each run is most probably different from other runs
due to the application of genetic programming, a kind of ran-
domized algorithm (hence, statistical analysis is necessary),
in GenProg-FL. Our experiment ran on three Ubuntu 10.04
machines in parallel.

5. RESULT DATA AND ANALYSIS
Experimental results are presented in Figure 1, which

shows the box-plots of repair effectiveness in term of NCP
when running GenProg-FL to repair each subject program
according to different AFL techniques. Note that there are
a total of 100 repair trials for one AFL technique on each
program. Hence, there are n successful trials if the success
rate is n%, which is shown in Table 2; the statistics in Figure
1 and Table 2 are computed according to the n successful
trials.

5.1 Statistical Analysis
Since randomized algorithm (i.e., genetic programming) is

applied in GenProg-FL, we use statistical analysis to com-
pare the localization effectiveness of various AFL techniques.
Specifically, the localization effectiveness (in term of NCP
score) of each AFL technique is summarized using the mean,
because the mean gives a more meaningful statistic located
over the median when the result data are constructed from
similarly sized clusters around two (or more) widely separated
values [23].

Then, we use nonparametric statistical tests to analyze
the result data. Although parametric statistical tests can be

0

100

200

300

400

500

600

700

jacc
ard

m2
tara

ntula

och
iai

ku
lcz

yn
sk

i2

base
lin

e

optim
al_p

arith
metic

_mean

ru
ss

el_ra
o

ample2

co
hen

ample
fle

iss

ro
gers_

tanim
oto

wong3

N
C

P
libtiff−bug−10a4985−5362170

0

100

200

300

400

500

600

700

jacc
ard

m2
tara

ntula

och
iai

ku
lcz

yn
sk

i2

base
lin

e

optim
al_p

arith
metic

_mean

ru
ss

el_ra
o

ample2

co
hen

ample
fle

iss

ro
gers_

tanim
oto

wong3

N
C

P
libtiff−bug−10a4985−5362170

0

100

200

300

400

500

600

700

base
lin

e

jacc
ard

och
iai

ku
lcz

yn
sk

i2

tara
ntula

m2
co

hen

arith
metic

_mean

wong3

ro
gers_

tanim
oto

ru
ss

el_ra
o

fle
iss

ample2

optim
al_p

ample

N
C

P

libtiff−bug−0fb6cf7−b4158fa

0

100

200

300

400

500

600

700

base
lin

e

jacc
ard

och
iai

ku
lcz

yn
sk

i2

tara
ntula

m2
co

hen

arith
metic

_mean

wong3

ro
gers_

tanim
oto

ru
ss

el_ra
o

fle
iss

ample2

optim
al_p

ample

N
C

P

libtiff−bug−0fb6cf7−b4158fa

0

50

100

150

200

250

300

350

ample

jacc
ard

base
lin

e

ku
lcz

yn
sk

i2

och
iai

m2

arith
metic

_mean

co
hen

ample2

tara
ntula

ru
ss

el_ra
o

wong3

optim
al_p

fle
iss

ro
gers_

tanim
oto

N
C

P

libtiff−bug−01209c9−aaf9eb3

0

50

100

150

200

250

300

350

ample

jacc
ard

base
lin

e

ku
lcz

yn
sk

i2

och
iai

m2

arith
metic

_mean

co
hen

ample2

tara
ntula

ru
ss

el_ra
o

wong3

optim
al_p

fle
iss

ro
gers_

tanim
oto

N
C

P

libtiff−bug−01209c9−aaf9eb3

0

100

200

300

400

500

600

jacc
ard

och
iai

m2
base

lin
e

ku
lcz

yn
sk

i2

tara
ntula

co
hen

ru
ss

el_ra
o

ample2

wong3

ro
gers_

tanim
oto

fle
iss

optim
al_p

arith
metic

_mean

ample

N
C

P

libtiff−bug−5b02179−3dfb33b

0

100

200

300

400

500

600

jacc
ard

och
iai

m2
base

lin
e

ku
lcz

yn
sk

i2

tara
ntula

co
hen

ru
ss

el_ra
o

ample2

wong3

ro
gers_

tanim
oto

fle
iss

optim
al_p

arith
metic

_mean

ample

N
C

P

libtiff−bug−5b02179−3dfb33b

0

100

200

300

400

500

600

700

tara
ntula

och
iai

ku
lcz

yn
sk

i2

m2
jacc

ard

ample

base
lin

e

ample2

optim
al_p

co
hen

arith
metic

_mean

wong3

ru
ss

el_ra
o

ro
gers_

tanim
oto

fle
iss

N
C

P

libtiff−bug−d39db2b−4cd598c

0

100

200

300

400

500

600

700

tara
ntula

och
iai

ku
lcz

yn
sk

i2

m2
jacc

ard

ample

base
lin

e

ample2

optim
al_p

co
hen

arith
metic

_mean

wong3

ru
ss

el_ra
o

ro
gers_

tanim
oto

fle
iss

N
C

P

libtiff−bug−d39db2b−4cd598c

0

100

200

300

400

500

600

700

ample

ku
lcz

yn
sk

i2

och
iai

tara
ntula

jacc
ard

m2

arith
metic

_mean

co
hen

optim
al_p

ample2

base
lin

e

wong3

ru
ss

el_ra
o

fle
iss

ro
gers_

tanim
oto

N
C

P

libtiff−bug−4a24508−cc79c2b

0

100

200

300

400

500

600

700

ample

ku
lcz

yn
sk

i2

och
iai

tara
ntula

jacc
ard

m2

arith
metic

_mean

co
hen

optim
al_p

ample2

base
lin

e

wong3

ru
ss

el_ra
o

fle
iss

ro
gers_

tanim
oto

N
C

P

libtiff−bug−4a24508−cc79c2b

0

100

200

300

400

500

600

700

ample

jacc
ard

m2
tara

ntula

ku
lcz

yn
sk

i2

och
iai

arith
metic

_mean

optim
al_p

ample2

co
hen

base
lin

e

wong3

ru
ss

el_ra
o

fle
iss

ro
gers_

tanim
oto

N
C

P

libtiff−bug−6f9f4d7−73757f3

0

100

200

300

400

500

600

700

ample

jacc
ard

m2
tara

ntula

ku
lcz

yn
sk

i2

och
iai

arith
metic

_mean

optim
al_p

ample2

co
hen

base
lin

e

wong3

ru
ss

el_ra
o

fle
iss

ro
gers_

tanim
oto

N
C

P

libtiff−bug−6f9f4d7−73757f3

0

100

200

300

400

500

600

700

jacc
ard

tara
ntula

ku
lcz

yn
sk

i2

ample

och
iai

co
hen

m2

ru
ss

el_ra
o

fle
iss

ample2

optim
al_p

ro
gers_

tanim
oto

arith
metic

_mean

wong3

base
lin

e

N
C

P

libtiff−bug−0860361d−1ba75257t

0

100

200

300

400

500

600

700

jacc
ard

tara
ntula

ku
lcz

yn
sk

i2

ample

och
iai

co
hen

m2

ru
ss

el_ra
o

fle
iss

ample2

optim
al_p

ro
gers_

tanim
oto

arith
metic

_mean

wong3

base
lin

e

N
C

P

libtiff−bug−0860361d−1ba75257t

0

100

200

300

400

500

600

700

co
hen

base
lin

e

arith
metic

_mean

jacc
ard

ru
ss

el_ra
o

och
iai

wong3

ample2

ku
lcz

yn
sk

i2

optim
al_p

m2

ro
gers_

tanim
oto

ample
fle

iss

tara
ntula

N
C

P

python−bug−69783−69784

0

100

200

300

400

500

600

700

co
hen

base
lin

e

arith
metic

_mean

jacc
ard

ru
ss

el_ra
o

och
iai

wong3

ample2

ku
lcz

yn
sk

i2

optim
al_p

m2

ro
gers_

tanim
oto

ample
fle

iss

tara
ntula

N
C

P

python−bug−69783−69784

0

100

200

300

400

500

600

700

jacc
ard

arith
metic

_mean

och
iai

co
hen

wong3

base
lin

e

ro
gers_

tanim
oto

ku
lcz

yn
sk

i2

m2
tara

ntula

fle
iss

ample

ru
ss

el_ra
o

ample2

optim
al_p

N
C

P

php−bug−309892−309910

0

100

200

300

400

500

600

700

jacc
ard

arith
metic

_mean

och
iai

co
hen

wong3

base
lin

e

ro
gers_

tanim
oto

ku
lcz

yn
sk

i2

m2
tara

ntula

fle
iss

ample

ru
ss

el_ra
o

ample2

optim
al_p

N
C

P

php−bug−309892−309910

0

100

200

300

400

500

600

700

tara
ntula

jacc
ard

och
iai

m2
ample

base
lin

e

arith
metic

_mean

ru
ss

el_ra
o

co
hen

ku
lcz

yn
sk

i2

optim
al_p

ample2

ro
gers_

tanim
oto

fle
iss

wong3

N
C

P

wireshark−bug−37112−37111

0

100

200

300

400

500

600

700

tara
ntula

jacc
ard

och
iai

m2
ample

base
lin

e

arith
metic

_mean

ru
ss

el_ra
o

co
hen

ku
lcz

yn
sk

i2

optim
al_p

ample2

ro
gers_

tanim
oto

fle
iss

wong3

N
C

P

wireshark−bug−37112−37111

Figure 1: Experimental Results. We present the 15 SBFL techniques in ascending order according to “Mean”.

more accuracy in some cases, these tests requires additional
assumptions, such as normality, for the studied data [6].
Since there may exist small deviations from the assumptions,
we use nonparametric tests to guarantee the analysis validity.
Specifically, suppose that the technique AFL1 has the higher
mean value over AFL2, the nonparametric Mann-Whitney-
Wilcoxon test [31] and A-test [28] are separately used to
qualitatively and quantitatively analyze the improvement of
AFL1 over AFL2.

For nonparametric Mann-Whitney-Wilcoxon test, the null
hypothesis is that result data from AFL1 and AFL2 share
the same distribution; the alternate hypothesis is that the
two group data have different distributions. In this case,
we say the improvement of AFL1 over AFL2 is statistical
significance when we reject the null hypothesis at a 5 percent
significance level.

To further assess the improvement quantitatively, we use
the nonparametric Vargha-Delaney A-test, which is recom-
mended in [6] and was also used in [23], to evaluate the mag-
nitude of the improvement by measuring effect size (scientific
significance)—in this case, a difference in the localization
effectiveness in term of NCP score. For A-test in this case,
the bigger deviation of A-statistic from the value of 0.5, the
greater improvement of AFL1 over AFL2. In [28] Vargha
and Delaney suggest that A-statistic of greater than 0.64 (or
less than 0.36) is indicative of “medium” effect size, and of
greater than 0.71 (or less than 0.29) can be indicative of a
promising “large” effect size.

5.2 RQ1
As described in [1], Ochiai performs better than the tech-

niques of Jaccard and Tarantula according to the EXAM
measurement. Based on a empirical evaluation, Rui Abreu et
al. [1] found that Ochiai always performed at least as good
as the other studied techniques, with the improvement of
4% against the second-best technique, on average. As shown
in Figure 1, however, Ochiai did not always perform better
over other techniques according to the mean on NCP score.
Take php case in Figure 1, Jaccard improved the localization
effectiveness over Ochiai in term of lower NCP score; the
improvement is statistically significant using Mann-Whitney-
Wilcoxon test (p = 0.015568).

In addition, Figure 1 also clearly shows that neither Op-
timal p nor Russel rao has the lowest mean value for any
subject program. Namely, neither Optimal p nor Russel rao
is the maximal AFL technique according to the NCP score,
though they have been theoretically proved to be the max-
imal according to EXAM measurement [32] among the 15
investigated techniques.

Overall, although more experiments are needed before
strong conclusions can be drawn, Figure 1 shows that these
AFL techniques performing well under the evaluation mea-
surement of EXAM do not have good performance according
to NCP measurement. That is, existing AFL techniques aim-
ing to benefit developers do not always perform better in the
context of automated program repair, justifying the necessity
of developing AFL techniques for automated program repair.

5.3 RQ2
As described in Section 5.1, we statistically rank the 15

techniques according to the mean. Note that in Figure 1 the
investigated AFL techniques have been presented in ascend-
ing order according to the mean value for each sub-figure.

The smaller mean indicates the better localization effective-
ness of the corresponding AFL technique. We are pleased
to find that the Jaccard technique has the better effective-
ness over most techniques in term of the smaller mean value.
Specifically, Jaccard has the best or second best effectiveness
in 8 of 11 faulty programs. For the remaining faulty pro-
grams, Jaccard, at least, has the better performance than
most techniques. We then check whether the effectiveness
improvement of Jaccard over other techniques is statistically
significant.

Table 2 gives the significance information (based on Mann-
Whitney-Wilcoxon test) on the comparisons of Jaccard and
the other techniques for each subject programs. We can
observe that for the first 10 subject programs Jaccard signif-
icantly has the smaller NCP score than most studied tech-
niques. For the wireshark program, Table 2 indicates that
Jaccard performs at least as good as the other techniques,
even if it does not have the best performance.

5.4 RQ3
We have qualitatively reported that Jaccard most often

has the best performance over other techniques, in this sub-
section we further quantitatively study the magnitude of the
performance improvement of Jaccard over other techniques.
Table 2 quantitatively shows the improvement in term of
A-test representing the effect size, if the improvement is
statistical significance using Mann-Whitney-Wilcoxon test.
Recall that A-statistic of greater than 0.64 (or less than 0.36)
can represent “medium” effect size, and of greater than 0.71
(or less than 0.29) can be indicative of a promising “large”
effect size. As described in Table 2, for most programs ex-
cept wireshark, Jaccard most often has the “medium” effect
size over other techniques. The effect size can be promising
“large” in some cases.

In summary, result data in our experiment show that 1)
these AFL techniques performing well under the evaluation
measurement of EXAM do not have good performance from
the viewpoint of fully automated program repair, 2) Jaccard
performs at least as good as the other 13 investigated tech-
niques, with the effectiveness improvement up to“large”effect
size using A-test. Hence, although more experiments are
needed before strong conclusions can be drawn, we suggest
that Jaccard should be used with high priority to provide
fault information for these techniques on automated pro-
gram repair before some more effective AFL techniques are
proposed in the future.

5.5 Threats to Validity
The main threats to the validity of our result belong to the

internal, external, and construct validity threat categories.
Internal validity threats corresponds to the relationship

between the independent and dependent variables in the
study. One such threat in our experiment is the distinct
inconsistency on the output among various AFL techniques.
For example, the suspiciousness value of each statement
outputted by Jaccard ranges from 0 to 1; the value outputted
by Wong3, however, does not suffer from the limitation, and
even can be negative. The inconsistency may cause unfair
comparison between various techniques. To mitigate this
threat we normalize the suspiciousness value of statements
outputted by each AFL techniques in the way described in
Section 4.3.

Table 2: The statistical comparisons between Jaccard and the other fault localization techniques. The “Sig.”
column shows the Mann-Whitney-Wilcoxon test on the difference comparison between various SBFL tech-
nique and Jaccard (1 represents statistically significant difference). We give the magnitude of “A-test” if the
difference is statistical significance. The “SR” column gives the Success Rate of each AFL techniques.

libtiff-bug-10a4985-5362170 libtiff-bug-0fb6cf7-b4158fa libtiff-bug-01209c9-aaf9eb3 libtiff-bug-5b02179-3dfb33b
SBFL Techniques Sig. A-test p-value SR Sig. A-test p-value SR Sig. A-test p-value SR Sig. A-test p-value SR
jaccard - 0.5 0.00000 100% - 0.5 0.00000 100% - 0.5 0.00000 100% - 0.5 0.00000 100%
tarantula 0 * 0.42362 100% 0 * 0.47277 100% 1 0.73 0.00000 100% 0 * 0.64209 100%
kulczynski2 0 * 0.29670 100% 0 * 0.91896 100% 1 0.68 0.00001 100% 0 * 0.90846 100%
ample 1 0.87 0.00000 99% 1 0.94 0.00000 88% 1 0.33 0.00004 100% 1 0.82 0.00000 99%
ochiai 0 * 0.14653 100% 0 * 0.75270 100% 1 0.63 0.00196 100% 0 * 0.37788 100%
cohen 1 0.84 0.00000 100% 0 * 0.08009 100% 1 0.73 0.00000 100% 1 0.68 0.00001 100%
m2 0 * 0.57444 100% 0 * 0.17638 100% 1 0.64 0.00092 100% 0 * 0.30604 100%
russel rao 1 0.88 0.00000 99% 1 0.91 0.00000 100% 1 0.76 0.00000 100% 1 0.74 0.00000 100%
fleiss 1 0.86 0.00000 99% 1 0.85 0.00000 100% 1 0.78 0.00000 100% 1 0.77 0.00000 100%
ample2 1 0.87 0.00000 100% 1 0.83 0.00000 100% 1 0.74 0.00000 100% 1 0.78 0.00000 100%
optimal p 1 0.77 0.00000 100% 1 0.87 0.00000 99% 1 0.78 0.00000 100% 1 0.80 0.00000 100%
rogers tanimoto 1 0.88 0.00000 97% 1 0.87 0.00000 100% 1 0.82 0.00000 100% 1 0.80 0.00000 100%
arithmetic mean 1 0.83 0.00000 100% 1 0.87 0.00000 100% 1 0.70 0.00000 100% 1 0.75 0.00000 100%
wong3 1 0.89 0.00000 98% 1 0.90 0.00000 100% 1 0.75 0.00000 100% 1 0.80 0.00000 100%
baseline 1 0.76 0.00000 100% 0 * 0.15593 100% 0 * 0.40466 100% 0 * 0.26630 100%

libtiff-bug-d39db2b-4cd598c libtiff-bug-4a24508-cc79c2b libtiff-bug-6f9f4d7-73757f3 libtiff-bug-0860361d-1ba75257t
SBFL Techniques Sig. A-test p-value SR Sig. A-test p-value SR Sig. A-test p-value SR Sig. A-test p-value SR
jaccard - 0.5 0.00000 100% - 0.5 0.00000 100% - 0.5 0.00000 100% - 0.5 0.00000 100%
tarantula 0 * 0.46265 100% 0 * 0.86680 100% 0 * 0.84361 100% 0 * 0.33126 100%
kulczynski2 0 * 0.51673 100% 0 * 0.68531 100% 0 * 0.12555 100% 1 0.61 0.00519 100%
ample 1 0.82 0.00000 100% 1 0.31 0.00001 100% 1 0.29 0.00000 100% 0 * 0.15015 97%
ochiai 0 * 0.17462 100% 0 * 0.83226 100% 0 * 0.12500 100% 0 * 0.06357 100%
cohen 1 0.85 0.00000 100% 1 0.67 0.00003 100% 1 0.77 0.00000 100% 1 0.59 0.02215 100%
m2 0 * 0.38910 100% 0 * 0.75772 100% 0 * 0.76961 100% 1 0.58 0.04772 100%
russel rao 1 0.90 0.00000 100% 1 0.93 0.00000 89% 1 0.93 0.00000 94% 1 0.61 0.00588 100%
fleiss 1 0.93 0.00000 100% 1 0.92 0.00000 88% 1 0.96 0.00000 97% 1 0.64 0.00087 100%
ample2 1 0.87 0.00000 100% 1 0.69 0.00000 100% 1 0.75 0.00000 100% 1 0.60 0.01418 100%
optimal p 1 0.86 0.00000 100% 1 0.67 0.00003 100% 1 0.76 0.00000 100% 1 0.61 0.00860 99%
rogers tanimoto 1 0.96 0.00000 99% 1 0.96 0.00000 86% 1 0.95 0.00000 87% 1 0.61 0.00682 100%
arithmetic mean 1 0.89 0.00000 100% 1 0.65 0.00027 100% 1 0.69 0.00000 100% 1 0.63 0.00165 98%
wong3 1 0.91 0.00000 100% 1 0.85 0.00000 100% 1 0.82 0.00000 100% 1 0.67 0.00004 97%
baseline 1 0.84 0.00000 100% 1 0.75 0.00000 100% 1 0.81 0.00000 100% 1 0.77 0.00000 97%

python-bug-69783-69784 php-bug-309892-309910 wireshark-bug-37112-37111
SBFL Techniques Sig. A-test p-value SR Sig. A-test p-value SR Sig. A-test p-value SR
jaccard - 0.5 0.00000 54% - 0.5 0.00000 100% - 0.5 0.00000 95%
tarantula 1 0.78 0.00000 45% 1 0.71 0.00000 87% 0 * 0.45240 96%
kulczynski2 1 0.68 0.00111 53% 1 0.67 0.00002 99% 0 * 0.07502 96%
ample 1 0.71 0.00050 38% 1 0.70 0.00014 45% 0 * 0.90861 95%
ochiai 1 0.64 0.01168 52% 1 0.60 0.01557 98% 0 * 0.78733 91%
cohen 0 * 0.59535 47% 0 * 0.08312 95% 0 * 0.80968 74%
m2 1 0.70 0.00170 36% 1 0.68 0.00001 99% 0 * 0.46967 95%
russel rao 0 * 0.24777 29% 1 0.76 0.00000 90% 0 * 0.88073 82%
fleiss 1 0.69 0.01155 22% 1 0.72 0.00000 95% 0 * 0.24023 79%
ample2 1 0.68 0.01246 23% 1 0.86 0.00000 70% 0 * 0.48815 76%
optimal p 1 0.69 0.00258 38% 1 0.87 0.00000 63% 0 * 0.98177 71%
rogers tanimoto 1 0.73 0.00051 30% 1 0.67 0.00005 95% 0 * 0.05147 75%
arithmetic mean 0 * 0.99503 53% 0 * 0.89162 97% 0 * 0.91004 75%
wong3 1 0.24 0.01273 61% 1 0.62 0.00445 100% 1 0.59 0.04434 82%
baseline 0 * 0.43960 66% 1 0.60 0.01180 98% 0 * 0.70923 84%

External validity is concerned with generalization. Since
we have selected 11 subject programs, chances are that the
results tend to support the conclusions drawn from our ex-
periment with some bias. Although one effective solution to
minimize the experimental bias is to increase the number of
subject programs, the experiment on more programs means
that more expensive computation resource is necessary. To
reduce the expensive computation, we plan to further op-
timize the repair process as we did for earlier work [24],
which will allow us to investigate a large number of subject
programs in the future.

Construct validity threats concern the appropriateness of
the evaluation measurement, we use the repair effectiveness
in term of NCP score to exam the localization effectiveness
of AFL techniques from the viewpoint of fully automated
debugging, and then use rigorously statistical analysis includ-

ing Mann-Whitney-Wilcoxon test and A-test to evaluate the
effectiveness according to NCP score.

6. DISCUSSION
Experimental results suggest that Jaccard can better help

program repair than other investigated techniques such as
Ochiai, Optimal p, and Russel rao, which are considered to
have the ability of ranking faulty statements higher in prior
studies. In this section, we try to explain why Jaccard has
the advantage of better helping program repair, and discuss
the possible limitations of Jaccard.

After investigating the outputs of 15 AFL techniques, we
find that Jaccard has more sharp score than other tech-
niques. Take php for instance, Table 3 presents the rank
lists produced by 4 AFL techniques. Suppose that S =
{s1, s2, · · · , sid, · · · } represents the set of statements con-
structing the studied faulty program P , B ⊂ S represents

Table 3: Part output of 4 AFL techniques on php

case in Figure 1. The “ID” column ranks each state-
ment according to the suspiciousness presented in
the “Sus.” column.

jaccard ochiai optimal p russel rao
ID Sus. ID Sus. ID Sus. ID Sus.

B

4044 1.000000 4044 1.000000 4044 1.000000 4044 1.000000
4053 1.000000 4053 1.000000 4053 1.000000 4053 1.000000
4054 1.000000 4054 1.000000 4054 1.000000 4054 1.000000
4059 1.000000 4059 1.000000 4059 1.000000 4059 1.000000
4060 1.000000 4060 1.000000 4060 1.000000 4060 1.000000
4063 1.000000 4063 1.000000 4063 1.000000 4063 1.000000
4064 1.000000 4064 1.000000 4064 1.000000 4064 1.000000
4065 1.000000 4065 1.000000 4065 1.000000 4065 1.000000
4066 1.000000 4066 1.000000 4066 1.000000 4066 1.000000
4067 1.000000 4067 1.000000 4067 1.000000 4067 1.000000
4068 1.000000 4068 1.000000 4068 1.000000 4068 1.000000
4069 1.000000 4069 1.000000 4069 1.000000 4069 1.000000
4070 1.000000 4070 1.000000 4070 1.000000 4070 1.000000
4071 1.000000 4071 1.000000 4071 1.000000 4071 1.000000

B

1058 0.500000 1058 0.707107 1058 0.999869 1058 0.833241
1115 0.142857 1115 0.377964 1115 0.999213 1115 0.624586
1116 0.142857 1116 0.377964 1116 0.999213 1116 0.624586
1204 0.125000 1204 0.353553 1204 0.999082 1204 0.610639
1205 0.125000 1205 0.353553 1205 0.999082 1205 0.610639
1206 0.125000 1206 0.353553 1206 0.999082 1206 0.610639
1207 0.125000 1207 0.353553 1207 0.999082 1207 0.610639
. .

the set of statements which have the bigger suspiciousness
values, and B = S \B, the complement set of S and B, con-
sists of the remaining statements. Then, we consider M ⊂ S
as the key statements4 in the sense that GenProg-FL can pro-
duce some valid patch by modifying one statement s ∈M or
some statements Msub ⊂M . Obviously, in Table 3 Jaccard
has the more sharp score in term of the smaller suspiciousness
of B. On one hand, when the size of BM = B ∩M is big
enough, the more sharp score enables Jaccard to keep bigger
suspiciousness of key statements and smaller suspiciousness
of most normal statements, resulting in more chances of
generating valid patches. Although some techniques may
rank faulty statements higher, they also produce not too
low suspiciousness of many normal statements (i.e., more
flat score), which drastically increases the risk of modifying
normal statements in B, resulting in new faults introduced.

On the other hand, the sharp score produced by Jaccard
may hurt the repair effectiveness when the size of BM =
B ∩M is much smaller (i.e., the size of BM = B ∩M is
much larger than the size of BM). The reason for that
is the smaller suspiciousness of BM (which includes most
statements of M in this context) reduces the chance of M
being selected for modification, which can compromise the
advantage provided by sharp score itself.

In fact, result data in Figure 1 are the trade-off between
the two above contexts. Fortunately, Jaccard, in most cases
(8/11), has the ability of getting not too small size of BM , and
thus has better performance in our experiment. Meanwhile,
we also notice that the advantage of Jaccard is not too evident
in the remaining cases (3/11), i.e., bug-d39db2b-4cd598c, bug-
4a24508-cc79c2b, and bug-69783-69784, due to a relatively
small size of BM . We will further empirically investigate
the impact of BM and BM on the repair effectiveness of
GenProg-FL in the future.

4Note that the key statements are not equivalent to the
faulty statements, and there may exist many distinct patches
affecting code in even different functions [10].

7. CONCLUSIONS
Existing AFL techniques have been developed with the goal

of helping developers fix bugs in code. Recent studies, how-
ever, have shown that the advantages of AFL techniques over
traditional debugging techniques on manual fault correction
are not as evident as expected even when the effectiveness
of AFL techniques is artificially improved. In contrast, the
activity of AFL is most often necessary for the techniques on
automated program repair, an indispensable part for the im-
plementation of fully automated debugging; the effectiveness
of used AFL techniques can drastically influence the repair
effectiveness. In this paper, we propose to develop AFL
techniques from the viewpoint of fully automated debugging,
and present the NCP score as the evaluation measurement
to assess and compare the effectiveness of various techniques.

In our experiment, we investigated 15 popular AFL tech-
niques under the NCP score on 11 subject programs shipping
with real-life field failures. By analyzing the result data using
statistical test, we have two important observations: 1) these
AFL techniques performing well in prior studies do not have
good performance from the viewpoint of fully automated
program repair, 2) Jaccard performs at least as good as
the other 13 investigated techniques, with the effectiveness
improvement up to “large” effect size. The first observation
presents the evidence of the necessity of studying the AFL
from the viewpoint of fully automated debugging. The sec-
ond observation suggests us that Jaccard should be used
with high priority before some more effective AFL techniques
specially proposed for automated program repair occur in
the future. Complete experimental results in this paper are
available at:

http://qiyuhua.github.com/projects/afl/

8. ACKNOWLEDGMENTS
The authors wish to thank W.Weimer et al. for their

noteworthy study on GenProg, based on which the GenProg-
FL system was built. The authors would also like to thank
the anonymous reviewers for their constructive comments on
this paper. This research was supported in part by grants
from National Natural Science Foundation of China (Nos.
61133001 and 91118007), National High Technology Research
and Development Program of China (Nos. 2011AA010106
and 2012AA011201), and Program for New Century Excellent
Talents in University.

9. REFERENCES
[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van

Gemund. A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software
(JSS), 82(11):1780 – 1792, 2009.

[2] R. Abreu, P. Zoeteweij, and A. van Gemund. On the
accuracy of spectrum-based fault localization. In
Testing: Academic and Industrial Conference, Practice
and Research Techniques, 2007.

[3] S. Ali, J. H. Andrews, T. Dhandapani, and W. Wang.
Evaluating the accuracy of fault localization techniques.
In International Conference on Automated Software
Engineering (ASE), pages 76–87, 2009.

[4] A. Arcuri. On the automation of fixing software bugs.
In International Conference on Software Engineering
(ICSE), pages 1003–1006, 2008.

[5] A. Arcuri. Evolutionary repair of faulty software.
Applied Soft Computing, 11(4):3494 – 3514, 2011.

[6] A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In International Conference on
Software Engineering (ICSE), pages 1–10, 2011.

[7] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test
generation for effective fault localization. In
International Symposium on Software Testing and
Analysis (ISSTA), 2010.

[8] M. Burger and A. Zeller. Minimizing reproduction of
software failures. In International Symposium on
Software Testing and Analysis (ISSTA), pages 221–231,
2011.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic internet services. In International Conference
on Dependable Systems and Networks, pages 595–604,
2002.

[10] Z. P. Fry, B. Landau, and W. Weimer. A human study
of patch maintainability. In International Symposium
on Software Testing and Analysis (ISSTA), pages
177–187, 2012.

[11] M. Harman. Automated patching techniques: the fix is
in: technical perspective. Communications of the ACM,
53(5):108–108, 2010.

[12] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit.
Automated atomicity-violation fixing. In Programming
Language Design and Implementation (PLDI), pages
389–400, 2011.

[13] W. Jin and A. Orso. Bugredux: reproducing field
failures for in-house debugging. In International
Conference on Software Engineering (ICSE), pages
474–484, 2012.

[14] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique. In
International Conference on Automated Software
Engineering (ASE), pages 273–282, 2005.

[15] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization
of test information to assist fault localization. In
International Conference on Software Engineering
(ICSE), pages 467–477, 2002.

[16] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated program
repair: fixing 55 out of 105 bugs for $8 each. In
International Conference on Software Engineering
(ICSE), pages 3–13, 2012.

[17] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: a generic method for automatic software
repair. IEEE Transactions on Software Engineering
(TSE), 38(1):54 –72, 2012.

[18] C. Le Goues and W. Weimer. Measuring code quality
to improve specification mining. IEEE Transactions on
Software Engineering (TSE), 38(1):175 –190, 2012.

[19] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable statistical bug isolation. In
Programming Language Design and Implementation
(PLDI), pages 15–26, 2005.

[20] L. Naish, H. J. Lee, and K. Ramamohanarao. A model
for spectra-based software diagnosis. ACM

Transactions on Software Engineering and Methodology
(TOSEM), 20(3):11:1–11:32, 2011.

[21] C. Parnin and A. Orso. Are automated debugging
techniques actually helping programmers? In
International Symposium on Software Testing and
Analysis (ISSTA), pages 199–209, 2011.

[22] Y. Pei, Y. Wei, C. Furia, M. Nordio, and B. Meyer.
Code-based automated program fixing. In International
Conference on Automated Software Engineering (ASE),
pages 392 –395, 2011.

[23] S. Poulding and J. A. Clark. Efficient software
verification: Statistical testing using automated search.
IEEE Transactions on Software Engineering (TSE),
36(6):763–777, Nov. 2010.

[24] Y. Qi, X. Mao, and Y. Lei. Making automatic repair
for large-scale programs more efficient using weak
recompilation. In International Conference on Software
Maintenance (ICSM), pages 254–263, 2012.

[25] J. Röβler, G. Fraser, A. Zeller, and A. Orso. Isolating
failure causes through test case generation. In
International Symposium on Software Testing and
Analysis (ISSTA), pages 309–319, 2012.

[26] H. Samimi, M. Schäfer, S. Artzi, T. Millstein, F. Tip,
and L. Hendren. Automated repair of HTML
generation errors in php applications using string
constraint solving. In International Conference on
Software Engineering (ICSE), pages 277–287, 2012.

[27] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and
P. T. Devanbu. To what extent could we detect field
defects? an empirical study of false negatives in static
bug finding tools. In International Conference on
Automated Software Engineering (ASE), pages 50–59,
2012.

[28] A. Vargha and H. D. Delaney. A critique and
improvement of the CL common language effect size
statistics of mcgraw and wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[29] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer.
Inferring better contracts. In International Conference
on Software Engineering (ICSE), pages 191–200, 2011.

[30] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of programs
with contracts. In International Symposium on Software
Testing and Analysis (ISSTA), pages 61–72, 2010.

[31] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80 – 83, 1945.

[32] X. Xie, T. Y. Chen, F.-c. Kuo, and B. Xu. A
theoretical analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Transactions
on Software Engineering and Methodology (TOSEM),
2013 (to appear).

[33] Y. Yu, J. A. Jones, and M. J. Harrold. An empirical
study of the effects of test-suite reduction on fault
localization. In International Conference on Software
Engineering (ICSE), pages 201–210, 2008.

[34] A. Zeller. Automated debugging: Are we close.
Computer, 34(11):26–31, 2001.

[35] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering (TSE), 28(2):183–200, 2002.

