The Strength of Random Search on
Automated Program Repair

o T Do .
Yuhua Qi , Xiaoguang Mao , Yan Lei, Ziying Dai and Chengsong Wang
College of Computer
National University of Defense Technology, Changsha, China

{yuhua.qi, xgmao, yanlei}@nudt.edu.cn {dzynudt, jameschen186}@gmail.com

ABSTRACT

Automated program repair recently received considerable
attentions, and many techniques on this research area have
been proposed. Among them, two genetic-programming-
based techniques, GenProg and Par, have shown the promis-
ing results. In particular, GenProg has been used as the
baseline technique to check the repair effectiveness of new
techniques in much literature. Although GenProg and Par
have shown their strong ability of fixing real-life bugs in
nontrivial programs, to what extent GenProg and Par can
benefit from genetic programming, used by them to guide
the patch search process, is still unknown.

To address the question, we present a new automated
repair technique using random search, which is commonly
considered much simpler than genetic programming, and
implement a prototype tool called RSRepair. Experiment
on 7 programs with 24 versions shipping with real-life bugs
suggests that RSRepair, in most cases (23/24), outperforms
GenProg in terms of both repair effectiveness (requiring
fewer patch trials) and efficiency (requiring fewer test case
executions), justifying the stronger strength of random search
over genetic programming. According to experimental results,
we suggest that every proposed technique using optimization
algorithm should check its effectiveness by comparing it with
random search.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and Debug-

ging

General Terms

Experimentation, Algorithms, Measurement

*The author is currently affiliated with The Institute of Mea-
surement and Communication, Beijing, and can be reached
at yuhua.gi@outlook.com.

JrThe corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ICSE’14, May 31 — June 7, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2756-5/14/05...$15.00

333

Keywords

Automated program repair, random search, genetic program-
ming, search-based software engineering

1. INTRODUCTION

Researchers have devoted considerable attentions to the
area of automated program repair [22, 13, 20], aiming at
automatically generating patches for failure-aware programs
without the manual efforts. With automated program repair,
much resource cost can be saved in the software mainte-
nance activity, for which patch generation is an essential
task. Recently, researchers have proposed several techniques
to automate the process of patch generation [21, 18, 27, 3,
28, 25,1, 7, 16].

Of these techniques, a particularly effective approach is
genetic-programming-based patch generation technique. Both
GenProg [40] and Par [18], which won the distinguished
awards in ICSE 2009 and ICSE 2013, respectively, showed
the very promising results by using the same genetic pro-
gramming algorithm to guide the patch generation process.
To repair a faulty program, GenProg [40], and its extension
[23, 21, 38] tries to produce a population of candidate patches
in each generation by modifying source code according to
mutation and crossover reuse structures, i.e., statement addi-
tion, removal and replacement, in other parts of the program.
Once candidate patches are available, GenProg has to run
fixed size of test cases to evaluate the fitness of each patch
to facilitate the next patch generation. GenProg iterates the
above steps until some valid patch passing all test cases is
obtained, or when some limit (i.e., too much time or too
many generations elapse) arrives. Par has the similar patch
generation process but generates candidate patches via fix
patterns learned from human-written patches, rather than
via code reuse used by GenProg.

The two main contributions presented by GenProg and
Par are 1) effective mutation operations (i.e., reuse struc-
tures for GenProg, and fix patterns for Par), and 2) using
genetic programming to guide the patch generation process.
Although the promising repair ability has been shown by
GenProg and Par, whether the repair ability is got based
on the guidance of genetic programming or just because the
mutation operations are powerful enough to tolerate the in-
action of genetic programming has rarely been studied. As
described in [4, 15, 14], we can consider genetic programming
to be effective at guiding the repair process, if and only if
genetic programming can guide the repair process to search

valid patches much faster, in terms of requiring fewer patch
trials', than random search.

In addition, similar to other search-based software engi-
neering (SBSE) [15, 14] approaches, genetic programming
often suffers from the computationally expensive cost caused
by fitness evaluation, a necessary activity used to distinguish
between better and worse solutions. In most cases, it is the
computation of fitness (by running fixed size of test cases for
each candidate patch) that occupies the largest part of the
overall repair process [15, 23]. Hence, we should investigate
whether genetic programming used by GenProg and Par can
guide the patch search fast enough to offset the cost of fit-
ness evaluation and thus speed up the repair process, even if
genetic programming has been finally proved to be effective.

Given the above issues, we construct a new repair tool
called RSRepair (Random-Search-based Repair), which tries
to repair faulty programs with the same mutation operations
as GenProg but uses random search, rather than genetic
programming, to guide the patch generation process. Unlike
genetic programming which requires fitness evaluation in the
sense that GenProg has to run fixed size of test cases to
compute the fitness of a candidate patch even if GenProg
has been aware that the patch is invalid (i.e., the patched
program has ever failed to pass some test case), random
search has no such constraint. That is, RSRepair immediately
discards one candidate patch once the patched program
fails to pass some test case. Therefore, for one concrete
patch RSRepair can take much fewer test case executions
to check its validity. In addition, one second advantage
of RSRepair is that RSRepair can speed up the process
of early invalid patch identification using classic test case
prioritization techniques [43, 30]. It, however, makes little
sense to apply the prioritization techniques to GenProg,
which still needs to compute the fitness of each patch even if
some patches are found to be invalid early.

Experimental results show that RSRepair has much better
performance than GenProg. In our experiment, we compared
RSRepair with GenProg by running them to repair a set
of 7 nontrivial programs with 24 real-world faulty versions.
Through the rigorous statistical analysis, we observed that 1)
RSRepair, in most cases, has the better repair effectiveness in
terms of requiring the smaller Number of Candidate Patches
generated before a valid patch is found (NCP), which indi-
cates that genetic programming algorithm used by GenProg
does not work well and even misleads the search process,
confirming the concern presented by Andrea Arcuri and Li-
onel Briand in their ICSE 2011 paper [4, Page 3] to genetic
programming used by GenProg, 2) RSRepair has the higher
repair efficiency by requiring much fewer test case executions
in the repair process.

In our early work [31], we have presented our insight with
limited experiment. In this paper we will introduce our work
in detail with the analysis to more experiment size. In short,
this paper makes the following contributions:

e Using the simplest randomized algorithm (i.e., random
search) to implement a repair tool called RSRepair
(Section 3), which mostly has better performance over
GenProg, a state-of-the-art repair tool using genetic
programming to guide the patch search.

'In this paper, we regard the step of checking the validity of
one candidate patch in the repair process as a patch trial; in
contrast, one concrete repair process can be regarded as one
repair trial.

334

e Analyzing the experimental results and discussing the
implications of such results for future research in the
area of automated program repair in general (Section
5 and Section 6).

Presenting a baseline approach based on random search
in the promising research area of automated program
repair, which is still in its infancy. We suggest that an
advanced repair approach should always be compared
against at least the baseline approach to check the
advantage of the new approach, which is consistent
with the declaration presented in [4, 15, 14].

2. BACKGROUND AND RELATED WORK

2.1 Automated Program Repair

Generally, automated program repair consists of three step-
s: fault localization [42, 17], patch generation, and patch
validation. When a bug is reported, we first use fault local-
ization techniques to identify suspicious faulty code snippet
causing the bug. Once faulty code snippet has been located,
many candidate patches can be generated through the mod-
ification to that code snippet, according to specific repair
rules based on either evolutionary computation [21, 3, 18] or
code-based contracts [37]. When a candidate patch has been
produced, regression testing, inclusive of negative test cases
(reproducing the fault) and positive test cases (characterizing
the normal behaviors), is commonly used to validate the cor-
rectness of produced candidate patch. The above procedure
can be iterated over and over again until some valid patch is
found. Any patch passing all these test cases is considered
valid.

Automated repair techniques have received considerable
recent research attentions. Guided by genetic programming,
GenProg has the ability to repair programs without any
specification, and GenProg is commonly considered to open
a new research area of general automated program repair
[26, 20], although there also exists earlier (e.g., [5, 2]) and
concurrent work on this topic [6]. AutoFix-E [37] can repair
programs but requires for the contracts in terms of pre- and
post-conditions. JAFF [3] tries to automatically correct the
faulty java programs using an evolutionary approach; the
repair effectiveness of JAFF were not reported on real-world
software with real bugs. PHPRepair [35] can automatically
fix HTML generation Errors in php applications through
string constraint solving. According to fix templates learned
from human-written patches, Par [18] has fixed successfully
many bugs existing in real world Java programs. SemFix
[27] tries to repair faulty C programs via semantic analysis
based on symbolic execution, constraint solving, and program
synthesis; whether SemFix scales well to large-scale program-
s, however, is still unknown due to the possible expensive
computation caused by semantic analysis.

Of these techniques, GenProg and Par, the two award-
winning patch generation techniques, presented the very
promising results. Both GenProg and Par use the same fault
localization technique to locate faulty statements, and genetic
programming to guide the patch search, but differ in the
concrete mutation operations. Although promising results
have been shown in their work, the problem of whether the
promising results are caused by genetic programming or just
because the used mutation operations are very effective is
still not be addressed.

2.2 Genetic Programming and Random Search

Genetic programming, which is a variation of the well-
known genetic algorithm, seeks to discover computer pro-
grams tailored to a particular task. Similar to traditional
genetic algorithm, genetic programming uses genetic opera-
tions such as selection, crossover and mutation to evolve its
populations to obtain some more adapted solutions [15]. In
the research area of automated program repair, GenProg is
the promising automatic solution designed to automatically
and generically patching bugs in the software maintenance
[20]. GenProg uses genetic programming algorithm to guide
the patch generation process. As described in [15], GenProg
needs to implement two key ingredients before the applica-
tion of genetic programming: 1) the representation of the
solution and 2) the definition of the fitness function. For the
representation problem, GenProg represents each candidate
patch as the Abstract Syntax Tree (AST) of the patched
program. For fitness function, GenProg uses test cases to
evaluate the fitness of each patch, and the patches with high
fitness passing many test cases are selected for continued
evolution in the next generation. That is, for each candidate
patch, GenProg has to run fixed size of test cases to compute
the fitness.

In contrast, random search, the simplest search algorithm
that appears frequently in the SBSE literature, does not use
a fitness function and thus does not incur the cost of fitness
evaluation. In fact, GenProg produces the first population
of candidate patches according to random search algorithm,
and genetic programming starts to work on GenProg from
the second generation. However, Andrea Arcuri and Lionel
Briand found that GenProg often searched valid patches
in the random initialization of the first population before
the actual evolutionary search even starts to work. They
doubted that the promising results may not be brought by
genetic programming used by GenProg, because the patch
search problem can be easy when random search would have
likely yielded similar results. In this paper, however, we plan
to further investigate whether genetic programming used by
GenProg has the better performance over random search,
when the actual evolutionary search has started to work.

2.3 Test Case Prioritization

As described earlier, random search is unguided, and thus
requires no fitness evaluation. Specifically for automated re-
pair, for random search one candidate patch can be discarded
immediately once the patch is regarded as invalid. Although
we can check whether one patch is valid through either re-
gression testing or formal specifications, regression testing
is most often used because formal specifications are rarely
available in practice. With no need for fitness evaluation, we
can speed up the patch validation process by maximizing the
rate of invalid-patch detection, which is well-researched in
the area of test case prioritization.

As described in [34] by Rothermel et al., test case prioriti-
zation problem can be defined as follows:

Given: T, a test suite; PT, the set of permutations of T
f, a function from PT to the real numbers.

Problem: Find T’ € PT such that (VI"') (T" € PT) (T" #
) [£(T') > F(T").

In the above context, PT represents the set of all possible
orderings of T'; f is a transition function used to evaluate
an award value for any ordering of PT. In fact, f describes
quantitatively the goal of prioritization, such as increasing

335

Algorithm 1: The GenProg Algorithm

Input :Faulty program P

Input :Test cases T'

Input :Mutation operator Mutate

Input :Crossover operator Crossover
Input :Full fitness predicate FullFitness
Input :Sampled fitness SampleFit

Input :Parameter PopSize

Output : One valid patch pt passing FullFitness

Csup < FaultLocalization(P, T);
Pop < Mutate(PopSize,P, Csup);
repeat
Fitnesses <— SampleFit (Pop);
Parents +
TournSelect (Pop, PopSize, Fitnesses);
Of fsprings < Crossover (Parents, P);
Pop <+ Mutate(Parents,Of fsprings);
until 3 pte Pop. FullFitness(pt) = Passed;
return pt;

[SA SN JURN VI

[N=JNv 0 R

the rate of fault detection of a test suite or increasing the
coverage of coverable code in the system under test at a
faster rate.

Techniques on test case prioritization are relatively ma-
ture, and much work has been presented in [43]. According
to different coverage criteria a family of prioritization tech-
niques are presented in [34]. Some research work evaluated
traditional techniques on test case prioritization in contex-
t of time-aware test case prioritization [44]. Furthermore,
there also exists much work focusing on different granularity
levels such as the function level [9], system model [19], block
level, and method level [8]. More details on prioritization
techniques have been listed in [43].

3. IMPLEMENTATION

We have implemented a repair tool called RSRepair, which
can automatically generate patches for faulty programs by
using purely random search algorithm. RSRepair also comes
with an adapted test case prioritization technique to speed up
the patch validation process. In this section, we first describe
GenProg, a state-of-the-art tool for automated C program
repair, on which we built RSRepair. Then, we present the
implementation details on RSRepair.

3.1 Repair Algorithm for GenProg

GenProg? has the ability of fixing bugs in deployed, legacy
C programs without formal specifications. With the hypoth-
esis that some missed important functionalities may occur
in another position in the same program, GenProg attempt-
s to automatically repair defective program with genetic
programming [38]. Algorithm 1 [21] gives the process of
patch generation of GenProg. Consider a faulty program P
shipping with a set of test cases 7', on line 1 GenProg first
localizes the faulty code area Cs,p» according to test case cov-
erage information. Then, line 2 initializes the population Pop
by independently mutating the PopSise copies of Csyp using
purely random search. Once Pop is available, the fitness of
each patch pt € Pop is computed via SampleFit, resulting
in the fitness set Fitnesses. The patches with high fitness

2 Available: http://dijkstra.cs.virginia.edu/genprog/

Algorithm 2: The RSRepair Algorithm

Input :Faulty program P
Input :Test cases T'
Input :Mutation operator Mutate

Output : One valid patch pt

1 index < 0O; // Initialize the index value
2 {no,tl,tg,...,tn}%T;
3 T <+ {(no,1)(t1,index), (t2,index), ..., (tn,index) };
4 Cyyup ¢+ FaultLocalization(P, T);
5 SuccessFlag < false;
6 repeat
7 pt < Mutate (P, Csup);
8 for i + 0 to n do
9 //Check that whether pt is valid;
10 (tindes,index) < GetTestcase(T, 1);
11 if PatchValidation(P, pt,tindes) F# true then
12 temp < (tindes, index + 1);
13 T < Prioritize (T, temp);
14 break;
15 else if i = n then
16 | SuccessFlag < true;
17 else
18 ‘ continue;
19 end
20 end
21 until SuccessFlag = true;
22 return pt;

have more chances of being selected into the next generation
(line 5) to continue evolution using Crossover (line 6) and
Mutate (line 7) operations. Line 4-7 is repeated until either a
valid patch is found to pass successfully FullFitness or some
predetermined limits has elapsed. More details on GenProg
can be found in [21].

3.2 Repair Algorithm for RSRepair

Similar to our prior work [30], we design the repair algo-
rithm of RSRepair to generate automatically patches using
purely random search algorithm combining with test case
prioritization technique to improve the repair efficiency. Al-
gorithm 2 [30] describes the repair algorithm in detail.

Given a faulty program P and test cases T, we reconstruct
the test cases T to give T the ability of mapping each test case
t € T to the number of candidate patches having been killed
by t. The intuition behind this reconstruction is that the
number of candidate patches killed by a test case t indicates,
at least partly, the ability of ¢ to detect invalid patches.
Hence, we should prioritize test cases having killed more
invalid patches to maximize early invalid-patch detection.
Note that on line 3 RSRepair initializes the index value of
no, one negative test case, with 1 due to its natural ability
of fault reproduction.

To limit the search space for generating patches, we localize
the faulty code area Csyp of P in the same way like GenProg.

The search begins by generating one patch pt through the
Mutate operation, which can produce one concrete patch
pt by modifying Csup. Note that the patches produced
by multiple calls to Mutate are probably different due to
the application of randomized algorithm. Lines 8-20 run
P against 1" in order, and reorder test cases 1" according

336

to the running result. Given that the ith test case for T,
line 10 calls the function GetTestcase to get the ith tu-
ple (tindew,index) of T; then, the function PatchValidation
runs P patched by pt against tinge. (line 11); if a fault is
detected by tindes, then RSRepair records the fault by up-
dating the tuple (tindes,index) with (tindes, index + 1) for
T (line 12), and reorders each test case t € T by calling the
function Prioritize (line 13), which reorders the test cases
T in descending order of index. (If multiple test cases have
the same index value, RSRepair orders them randomly.) If
P successfully passes all the test cases T (line 16), RSRepair
considers that a valid patch is found (line 16), and terminates
the repair process immediately with the output of valid patch
(line 22).

3.3 Implementation of RSRepair

According to Algorithm 2, we implemented RSRepair by
modifying GenProg, which is written in OCaml language.
Specifically, RSRepair uses the same implementation of func-
tions including FaultLocalization and Mutate in Algorithm
2 as GenProg in Algorithm 1.

RSRepair uses one simple statistical fault localization hav-
ing been implemented in GenProg to determine fault local-
izations. With the assumption that a statement visited by
negative test cases is more likely to be faulty than other
statements, RSRepair computes the suspiciousness value sp
of each statement in the way like that: a statement never
visited by any negative test case has the sp value of 0; a
statement visited only by negative test case has the high
value of 1.0; a statement visited both by positive and nega-
tive test cases is given the moderate value of 0.1. RSRepair
determines the probability of each statement based on these
suspiciousness values; the bigger the suspiciousness value of a
statement, the more chances of the statement being selected
for mutation in the patch generation process.

Once some statements are selected for mutation, RSRepair
will generate one candidate patch by mutating randomly
these statements according to Mutate operations, i.e., state-
ment addition, removal and replacement. This kind of muta-
tion has been proved to be very effective in terms of repairing
successfully 55 of 105 faulty programs in [21].

In fact, RSRepair produces candidate patches in the same
way of generating randomly patches in the first generation of
GenProg but without fitness guidance and crossover in the
subsequent generations. For the process of patch validation,
RSRepair validates candidate patches in the way described
in Algorithm 2.

4. EXPERIMENTAL DESIGN

To check the performance of RSRepair, we compare it
with GenProg, a state-of-the-art tool on automated program
repair, on 7 subject programs with 24 faulty versions. We
selected GenProg for the reason that GenProg is almost the
only state-of-the-art automated repair tool which can fix
bugs in real-world, large-scale C programs. Although in the
paper [18] Par had better performance than GenProg in Java
benchmarks, the paper also acknowledged the performance
advantage may not hold in C benchmarks used by GenProg.
What is more, unlike Par whose source code is not publicly
available, both source code and experimental benchmarks of
GenProg are publicly available, facilitating the experiment
reproduction and comparison between RSRepair and GenP-
rog. In addition, literature [11] and our previous work [32,

33] also used GenProg as the sole tool to conduct relevant
experiments.

4.1 Research Questions

Our experimental evaluation seeks to address the following
Research Questions:

RQ1: Whether can GenProg search a valid patch with fewer
patch trials, compared to RSRepair?

Intuitively, genetic programming, an advanced search algo-
rithm, should outperform purely random search, the simplest
form of search algorithm, because higher quality solutions
may be found faster with the aid of a fitness function. The
intuition, however, is built on the assumption that fitness
function can, at least partly, distinguish between better and
worse solutions, and identify how close a candidate solution
is to the optimal or near optimal solutions. A poor fitness
function cannot benefit the search process, and even has the
negative effectiveness. Specifically for GenProg, the fitness of
each candidate patch is computed by counting the weighted
number of passing test cases; the number is used to measure
how close a candidate patch is to the valid patch. Although
some promising results for GenProg have been presented in
some recent serial papers [40, 23, 21, 38, 10, 22], the problem
of whether the promising results are got based on the guid-
ance of genetic programming or just because the mutation
operations are powerful enough to tolerate the inaccuracy of
used fitness function has never been studied.

Given the problem, RQ1 asks whether genetic program-
ming used by GenProg works well to benefit the generation
of valid patches. Andrea Arcuri and Lionel Briand [4] point-
ed out that a search algorithm should always be compared
against at least random search to check how well the search
algorithm performs, which can be measured by comparing the
amount of effort expended between the search algorithm and
random search. This effort, as described by Mark Harman
in [15], is commonly measured through counting the number
of fitness evaluations (i.e., patch trials) that were performed
in the search process; the smaller the number is, the better
the search algorithm is. However, in most recent work on
GenProg [21] and Par [18] published in ICSE 2012 and ICSE
2013 respectively, we still do not find the effort comparison
between genetic programming and random search. In this
sense, RQ1 is the supplement to these work.

RQ2: Does GenProg find a valid patch much faster than
RSRepair in terms of requiring fewer Number of Test
Case Executions (NTCE) within a successful repair
process?

Like other heuristic algorithm of SBSE, such as hill climbing
and simulated annealing, the use of genetic programming has
a benefit and a cost. The benefit is fewer patch trials should
be needed with the aid of a fitness function (if the used fitness
function works well). The cost is that the trial-and-error
nature of genetic programming requires a large number of
fitness evaluations during the search process; fitness evalu-
ations may turn out to be computationally expensive and
occupy the largest part of the overall computational cost
of the search process [15]. An effective implementation of
genetic programming algorithm should enlarge effectively the
benefit to offset the evaluation cost, and further reduce the
whole time cost in the search process.

337

Table 1: Subject Programs
LOC Test Cases
5 bug-1806-1807
16 bug-1913-1914
18 bug-2330-2331
17 bug-2661-2662
73 bug-01209c¢9-aaf9eb3
31 bug-0860361d-1ba75257
73 bug-0fb6cf7-b4158fa
33 bug-10a4985-5362170
59 bug-4a24508-cc79c2b
64 bug-5b02179-3dfb33b
59 bug-6{9f4d7-73757f3
77 bug-829d8c4-036d7bb
35 bug-8f6338a-4cHa9ec
76 bug-90d136e4-4c66680f
73 bug-d39db2b-4cd598c
76 bug-ee2ce5b7-b5691aba
60 bug-0661f81-ac6a583
31 bug-3af26048-72391804
33 bug-d13beT2c-ccadf48a
145,000 144 bug-14166-14167
407,000 303 bug-69783-69784
491,000 2 bug-3feOcacadabaa3-39a362ae9d9b00
1,046,000 4,986 bug-309892-309910
2,814,000 53 bug-37112-37111

Program Version

lighttpd 62,000

libtiff 77,000

gmp
python
gzip

php
wireshark

Specifically for GenProg, which computes the fitness of
each candidate patch by counting the weighted number of
passing test cases, test case executions most often takes the
largest part of time cost in the whole repair process[23, Fig.§],
especially for safety-critical programs equipping with many
test cases. For simplification, we can measure the efficiency
of GenProg using the NTCE when a valid patch is found [39].
Compared to random search, genetic programming used by
GenProg can be regard as efficient only when the benefit
(in terms of early finding a valid patches with fewer number
of patch trials), brought by genetic programming, has the
ability of balancing the cost of fitness evaluations, caused by
genetic programming itself. However, whether the balance
can be achieved by genetic programming used by GenProg
has still been unknown so far. RQ2 is designed to answer
the question.

4.2 Subject Programs

We selected the subject C programs used in the most recent
work [21] on GenProg as the experimental benchmarks®, each
of which comes with real-life bugs existing in history versions.
We conducted our experiment only on program versions which
have ever successfully repaired by GenProg in [21]. For the
fbc program version, we have the compilation trouble when
we try to compile the program. For simplification, we also
excluded the faulty versions (including one lighttpd version
and 2 1ibtiff versions) that can be repaired successfully by
modifying not less than two source files (i.e., .c file), because
extra work has to be done to make CIL, a tool which can
transform C program into AST used by both GenProg and
RSRepair, work well to manipulate multi source files.

For php programs coming with over 4,000 test cases, vali-
dating only one patched program mostly takes several min-

3https://church.cs.virginia.edu/genprog/archive/genprog-
105-bugs-tarballs/

utes, resulting in time-consuming repair process. Hence, if
we conduct experiment on all the php program versions, too
much time used by experiment evaluation is unavoidable
(see [21, Table II]); in the paper [21] Amazon’s EC2 cloud
computing infrastructure including 10 trials in parallel was
used for experiment evaluation. Given the expensive testing
computation, we randomly selected one faulty php version,
although these php versions shipping with many test cases,
which can cause expensive fitness evaluation cost for GenP-
rog, will give RSRepair more advantages. For gmp, python,
gzip, and wireshark, there exists only one version having ev-
er been repaired successfully by GenProg in [21]; we selected
these versions in our subject programs.

Table 1, in total, describes our 7 subject programs with
24 versions in detail. The LOC (Lines Of Code) column
lists the scale of each subject program, and the last two
columns give the size of positive test cases and the version
information. Note that for all programs in Table 1, although
there are more test cases listed in [21, Table I}), in practice
the concrete number of test cases used for each bug version
is similar but different because not all the test cases work
well for every version. In addition, for each subject program
we reproduced the bug by executing one negative test case
in the repair process.

4.3 Experimental Setup

For the purposes of comparison, we separately ran RSRe-
pair and GenProg to repair all the 24 faulty versions described
in Table 1. All the experimental parameters for GenProg
in our experiment are similar to those settings in [21]: we
limited the size of the population for each generation to 40,
and a maximum of 10 generations for each repair process;
the global mute rate mute is set to 0.01. In fact, for all
generations except the first generation, there are another
40 candidate patches generated due to crossover. That is,
for one concrete repair process, GenProg can iteratively pro-
duce no more than 40+80*9=760 candidate patches. For
RSRepair, we also limited the size of the population for
each generation to 40, and a maximum of 10 generations
for each repair process; for each generation, using random
search (without crossover) total 40 candidate patches are
produced in the same way of the first generation. Hence,
for fair comparison, we considered that RSRepair (GenProg)
failed to repair one subject program in one repair process if
the valid patch was not found within 40*10=400 candidate
patches.

As described in [24, 21], the fitness function (i.e., Sampl-
eFit function in Algorithm 1) samples a random 10% of
the positive tests to compute the fitness when the programs
equipping with many test cases: GenProg test one candi-
date patch against the full suite iff the patch passes all the
sampled test cases. Take python, which has 303 test cases
in Table 1, for instance, GenProg has to run the patched
python against the total 31 test cases, including 30 sampled
positive tests and 1 negative tests, to compute the fitness
of one candidate patches; the patched python is then tested
against the full 303 test cases if it has passed all the above
31 test cases. In our experiment, we ran GenProg with the
same fitness evaluation mechanism as described above.

All the experiments ran on an Ubuntu 10.04 machine with
2.33 GHz Intel quad-core CPU and 4 GB of memory. S-
ince randomized algorithm is applied in both RSRepair and
GenProg, we statistically analyze the experimental results.

338

Specifically, for RSRepair and GenProg we separately per-
formed 100 trials for each program with the seeds starting
from 0 and ending in 99, and logged only the trials leading
to successful repairs.

5. EXPERIMENTAL RESULTS

We first present experimental results in Table 2, which
reports the summary statistics of the extracted information.
The 3rd column and 4th column list the Mean and Median,
respectively, of Number of Test Case Executions (NTCE)
for each program. The 5th column gives the average time
of repairing successfully each program. The 6th column
presents the success rate when using one repair tool to fix
each program. Recall that in our experiment we separately
ran RSRepair and GenProg 100 times on each of the 7
programs with 24 versions. Hence, the success rate is n% if
there are n successful trials; all the other statistics in Table
2 are computed according to the n successful trials. The
7th column reports the effect size on the difference between
RSRepair and GenProg on NTCE, with the p-value presented
in the 8th column.

Next we use our study results to address the two research
questions (Section 4.1).

51 RQI

To answer this question, we need to describe the mea-
surement of how well the search process performed, when
comparing GenProg and RSRepair. As described in [15], to
conduct a fair comparison, it is important to establish the
amount of effort expended by each search algorithm to find
the optimal or near optimal solutions; “This effort is com-
monly measured by logging the number of fitness evaluations
that were performed”. Specifically for GenProg, every candi-
date patch needs fitness evaluation. Hence, we can compute
the number of fitness evaluations by logging the Number of
Candidate Patches generated in the repair process (NCP).

For GenProg and RSRepair, the one with smaller NCP
(when some valid patch is found) is considered more effec-
tive. Computing precisely NCP for GenProg and RSRepair,
however, is difficult due to the stochastic nature of random-
ized algorithms. To mitigate against the effects of random
variation, in our experiment both GenProg and RSRepair
are repeated 100 times with different seeds. Normally, the
NCP of each repair trial should be logged for the subsequent
statistic analysis. However, running each repair trial without
terminal until some valid patch is found, sometimes, is too
computationally expensive when searching a valid patch is a
hard problem (in term of requiring lots of NCP), especially
when the programs come with many or long-running test cas-
es. For instance, it may take several hours to search a valid
patch for wireshark in Table 1 with GenProg or RSRepair.
As such, according to the work [18, 21], we limited the value
of NCP within 400; for each repair trial we consider it fails
to repair one program if a valid patch is not found when the
limitation arrives. In the experiment, it is unfair comparison
if we directly analyze experimental results according to the
NCP of only successful repair trials. For example, for two
concrete repair trials on the same program, RSRepair finds a
valid patch with the NCP value of 399, and for GenProg the
NCP value is 430. Although RSRepair has the better repair
ability in term of smaller NCP value, the logged value of
399 has the negative effect on the repair ability of RSRepair
using statistic analysis, because the value of 430 on GenProg

Table 2: Experimental Results by RSRepair and GenProg

Mean Median Avg. Time(s) Success A-test
Program Approach of NTCE of NTCE Per Repair Rate on NTCE p-value
RSRepai 111 88 290.872 88%
lighttpd-bug-1806-1807 cpait ®0.616883 0.023741
GenProg 194 116 268.502 49%
RSRepai 199 201 513.130 38
lighttpd-bug-1913-1914 cepait % 059774 0.424466
GenProg 235 229 352.479 %
RSRepai 70 60 168.087 100
lighttpd-bug-2330-2331 epatt % 0700655 0.000001
GenProg 182 102 270.021 87%
RSRepai 24 22 19.058 100
lighttpd-bug-2661-2662 cpatt % 0794850 0.000000
GenProg 38 32 24.869 100%
: i 7 7 18744 1
libtiff-bug-01209c9-aaf9eb3 RSRepair 9 8 8 00% 940400 0.000000
GenProg 122 109 25.764 100%
libtiff-bug-0661£81-ac6a583 RSRepair 102 92 293.806 100% 5 850988 0.000000
GenProg 304 207 698.341 86%
i 269.14 1
libtiff-bug-0860361d-1ba75257 L+ LoPalr 63 o7 69.149 00% 787165 0.000000
GenProg 177 119 439.535 97%
RSRepai 187 170 242.009 100
libtiff-bug-0fb6ef7-b4158fa cpait % 0813636 0.000000
GenProg 587 505 465.513 7%
i 1 1 12,582 1
libtiff-bug-10a4985-5362170 RSRepair > 7 58 00%) 834946 0.000000
GenProg 150 89 73.669 93%
RSRepai 55 46 213.590 100
libtiff-bug-3af26048-72391804 epait % 0796753 0.000000
GenProg 135 01 470.891 97%
i 4 . 100%
libtiff-bug-4a24508-cc79¢2b RSRepair 66 6 55.937 00% 926400 0.000000
GenProg 115 94 88.147 100%
' 11 1 121.4 1009
libtiff-bug-5b02179-3dH33b RSRepair 9 03 09 00%) 826053 0.000000
GenProg 338 218 241.101 95%
RSRepai 68 65 66.104 100
libtiff-bug-6£9f4d7-7375713 epait % 0.922800 0.000000
GenProg 123 101 114.560 100%
RSRepai 154 148 233.548 88%
libtiff-bug-829d8c4-036d7bb cbait ° ° % 0830168 0.000000
GenProg 540 554 539.218 73%
RSRepai 47 43 25.950 100
libtiff-bug-8f6338a-4c5adec cbatr % 0867400 0.000000
GenProg 92 75 33.386 100%
RSRepai 100 93 82.677 1007
libtiff-bug-90d136e4-4c66680f epait % 0.936600 0.000000
GenProg 349 225 132.086 100%
: - -
libtiff-bug-d13beT2c-ccadfdga T LCPAIr 89 73 500.578 99% 757386 0.000000
GenProg 265 161 907.452 80%
RSRepai 110 99 146.467 98
libtiff-bug-d39db2b-4cd598c cbait % 0883716 0.000000
GenProg 387 277 96.754 96%
RSRepai 104 94 99.444 100
libtifl-bug-ee2ce5b7-b5691a5a epait % 0.926650 0.000000
GenProg 354 238 131.874 100%
RSRepai 312 301 606.511 587
gmp-bug-14166-14167 cpatt % 0817529 0.000590
GenProg 663 530 472.828 12%
RSRepai 434 408 452.185 37
python-bug-69783-69784 epait % 0.990991 0.000000
GenProg 2572 2318 1409.825 21%
RSRepai 255 265 246.135 21
gzip-bug-3felca... cbait % 0085714 0.194481
GenProg 168 181 161.441 4%
RSRepai 4997 4994 457.486 100
php-bug-309892-309910 cpatr % 1000000 0.000000
GenProg 20837 16986 1440.835 97%
RSRepai 167 179 2159.907 8
wireshark-bug-37112-37111 cpatt % 0040625 0.000204
GenProg 630 536 1845.472 20%

* We separately ran RSRepair and GenProg 100 times on each of the 24 subject programs and only recorded the trials leading
to successful repair.

339

is not logged at all due to the limitation on the maximal
NCP.

Given this issue, we conduct the comparison between G-
enProg and RSRepair as follows. First, we measure how
well each repair tool performs using success rate described in
Table 2. The intuition behind this measurement is that an
effective repair tool, which probably requires smaller NCP
when finding a valid patch, should have the higher success
rate with the limitation on the maximal NCP in our experi-
ment. Second, if GenProg and RSRepair for one program,
such as 1libtiff-bug-4a24508-cc79c2b in Table 2, have the
same success rate of 100%, we further compare the repair
effectiveness according to NCP measurement using rigorous
statistic analysis. Specifically, when repairing one program,
GenProg and RSRepair have the completely same patch
generation process within the population in the first gener-
ation (Recall that RSRepair is the modification version of
GenProg with the same patch generation process in the first
generation, described in Section 3.3); with the same seed,
GenProg and RSRepair should have the same NCP when the
NCP value is not bigger than 40, which has been confirmed
in our experiment. Given that, if GenProg and RSRepair
have the same success rate of 100% for one program, we
exclude the repair trials whose NCP are not bigger than 40,
the population size of the first generation, because genet-
ic programming used in GenProg just starts to work from
the second generation. After the exclusion process, we can
check whether genetic programming perform well to guide
the patch generation process when it does start to work.

As described in Table 2, in most cases, RSRepair, has the
higher (16 of 24) or equal success rate (7 of 24) over GenProg.
The higher success rate indicates that RSRepair has the
higher repair effectiveness in term of requiring probably
fewer NCP in the repair process. The only exception is
on wireshark, for which GenProg outperforms RSRepair in
terms of higher success rate. Having analyzed the repair
process, we find that the patched programs are more likely
to fail to be compiled in the initial phase of repair process,
compared to other programs. Thus, we suspect the reason
for the exception to be that GenProg is good at eliminating
the bad patches (which fails to be compiled) and can produce
more compilation-able candidate patches in the sequent repair
process.

To further confirm the advantage of RSRepair, we statisti-
cally analyze the NCP on the programs for which GenProg
and RSRepair have the success rate of 100%. Statistic re-
sults are presented in Figure 1. In the analysis process, we
exclude the repair trials whose NCP is not bigger than 40
(note that lighttpd-bug-2661-2662 is excluded from this
table because there exists no repair trials whose NCP is big-
ger than 40 for this program), and statistically analyze the
remaining trials (with the sizes listed in the 3rd list of Figure
1(b)) on NCP. The 4th and 5th column report the mean and
median values on NCP, respectively. The 6th column gives
the statistical significance by using Mann-Whitney-Wilcoxon
test to analyze the difference between the two tools on NCP,
with the p value listed in the last column.

Figure 1 suggests that for all the 6 programs RSRepair has
the smaller NCP over GenProg even if genetic programming
starts to guide the patch generation from the 2th generation.
For the last 2 programs in Figure 1(b), the advantage of
RSRepair is statistical significance; although there exists no
significant difference for the remaining 4 programs due to

340

g R . /B 3 § [=incnerd
300;}: ;’ 2‘ 5 ;'g ___1GenProg]|
8 3 5 g g T 8 7
o < :s 1) - | O
250~ S 2 © 2 9 b
g b T 7 AL
2 2 2 2 - PO
zooj ﬁ f"_ f ff ° : :‘l: ° b
£ £ £ £ £ £ |
5 |12 8 8 8 8 2
z
150- ° 8 T 1
° |
T T T -
100- | n | Q | 1
T Q N E| | T
50*%' n E| Q Q E Q T L 1T L
(a) Boxplots on NCP of 6 programs.
Program Approach Size Mean Median Sig. p-value
o RSRepair 10 57 56 o
libtiff-bug-012. GenProg 10 77 67 0 0.053632
o RSRepair 8 65 57 -
libtiff-bug-4a2. GenProg 3 93 59 0 0.937685
o » RSRepair 17 60 51 .
“bug-6£9
libtiff-bug-6£9. GenProg 17 68 66 0 0.479761
o RSRepair 5 49 45 .
libtiff-bug-8£6. GenProg 5 75 68 0 0.055556
o RSRepair 38 79 66
libtiff-bug-90d. GenProg 38 129 115 1 0.000106
e . RSRepair 42 91 75 . ..
libtiff-bug-ee2. GenProg 42 120 104 1 0.031763

(b) Statistical results.

Figure 1: The statistical comparison on NCP of 6
programs for which GenProg and RSRepair have the
success rate 100%.

too small sample sizes (no more than 20 in the “Size” column
of Figure 1(b)), RSRepair has the smaller NCP in terms of
Mean and Median.

Answer for RQ1: In our experiment, for most programs
(23/24), random search used by RSRepair performs better
(in terms of requiring fewer patch trials to search a valid
patch) than genetic programming used by GenProg, regard-
less of whether genetic programming really starts to work
(see Figure 1) or not. We defer discussing the possible reason
to Section 6.

5.2 RQ2

As presented in RQ1, to find a valid patch, GenProg, in
most cases, requires not fewer NCP than RSRepair. That
is, compared to random search, genetic programming does
not bring benefits (in term of fewer NCP in this case) to
balance the cost caused by fitness evaluations. Hence, it is
not surprising that GenProg, most often, took more time
to repair successfully faulty programs, on average, in Table
2. Then, in this subsection we plan to investigate to what
extent genetic programming used by GenProg worsens the
repair efficiency over random search used by RSRepair.

“Running test cases typically dominated GenProg’s run-
time” [22], which is also suitable for RSRepair, so we use
the measurement of NTCE to compare the repair efficiency
between GenProg and RSRepair, which is also consistent
with traditional test case prioritization techniques aiming at
early finding software bugs with fewer NTCE. An efficient
repair tool should find a valid patch with fewer NTCE.

Like the evaluation of NCP in RQ1, it is difficult to com-
pute precisely the value of NTCE due to the stochastic nature
of randomized algorithms used by GenProg and RSRepair.

1800

1600

200

I —iooo

(S

&

T
|
|
|
|
|
|
~
L <
1400 S -t
) © o R) 8
e @ Q2 v} - Y
o el © R 2 S
~ < - I 2 So 2 Jre} © Q S
o - 1) © T <Q - - | @ o S
@ o <] © © S | S ') ~ 33
— — 3% N] bl el [|
| |)) o) Lo | =) X @
1200 Fo) =} - 3} b © ~ @0 S =}
=} - @ ©] @ 2] 51 o 3 D
@ o] © o = o 38 < S 5
- - 13 N « © © g ! « & N
| | | | - © =<} = o © ©
= = = =3 (= o =] (=3 — o <
@ =1 =1 =1 =1 1 1 1 i | I |
c o o o o =] =) =3 o | =2} = =)
[} i 1 i 1 = = 3 i S E] S
= 1000 -2 ° ° ° o oo o a2 o 2 o
3 =3 g = g o < o o o o <
g 515 |5 |5 |5 |58 |5,/ |8 |3
@ 2 2 2 2 2 2.0 =2 21 2 2 2
®
172}
8 o
v 800
o
i
T °
|
8 o
600— T ‘
- | ° ° °
I | | 8 °
| | 8 —]
| 8 ©
| | _
400~ I | o . ~
T - | - ‘ o
|
! o o P! I
|
\ 8 8 !
o
L o
° T ?
|
|
Y E 1
T ! L &

oo
{-eoo o
HI - —4®00 o0

o

libtiff-bug-5b02179-3dfb33b

- — - — — — — =0

Eli

] RSRepair
[JGenProg
= o
a]
(o2}
el
=3
Q
© o
o
©
« g
S < 0 -] —
el 0] o © ® o |~
o S 8 3 g 3 > o ° =
s 5 > o ° B B > 3 < o ~
0 © 3 o o T o 1o ~ ~ © >)
~ »] <) 3] a © > © 2 i
%) o1 8 | T < T 2 3] m
N~ T i < o} I o |~ < 1 kel S o =
] < s O I o2 5 = o @ >0 =]
~ S 3 © ~ o e} | 0 @ o ~
° 2 | & » @ Q8 o © ~ @ [
N o a3 ~ o Q9 o S ° ©) o 2 [
> 2, 3 o [}] Y — 124 o 2 [
2 I L =] = 2] [0} Y 1 2 =1
T 0303 2% Y_% g % 8 3
=) =) [=) =) [=) o7 o &HT |3 & L xT
=1 = - =1 =] S 1 3 > |1 5 = =
3, F.% 30385 3 3024
i 5]
£ 5,58 s¢%8 £,%5, 2! & L1 gL
g £
£ 8| 8 £° 5 8] 2,5 &% B8 & 3
|
[[|
|
| | | | i
L [| \
! |
|
|
|
|
|

- ———— === ==

4

|
oo

@@om

T =

ih
o

[} -1 oo

1.

I —= @
"

L]

Figure 2: NTCE boxplots for experiments. Note that for the python and php, which give too large NTCE over
other programs, for the ease of presentation we narrowed down the NTCE values with linear scale for the two

programs.

As such, we use statistical analysis to compare qualitatively
and quantitatively the NTCE between the two tools. We
first summarize the NTCE value of each tool using the Mean,
because the Mean may perform better over median when
the result data are constructed from similarly sized clusters
around more than two widely separated values [29]. Then,
we use Mann-Whitney-Wilcoxon test [41] and A-test [36], the
two nonparametric approaches, to qualitatively and quanti-
tatively analyze the difference significance.

For nonparametric Mann-Whitney-Wilcoxon test, the null
hypothesis is that result data from the studied two groups
share the same distribution; the alternate hypothesis is that
the two group data have different distributions. In this case,
we say the difference is statistical significance when we reject
the null hypothesis at a 5 percent significance level.

To further assess the difference quantitatively, we use the
nonparametric Vargha-Delaney A-test, which is recommend-
ed in [4] and was also used in [29, 32], to evaluate the mag-
nitude of the difference by measuring effect size (scientific
significance) on NTCE. For A-test, the bigger deviation of
A-statistic from the value of 0.5, the greater difference of the
two studied groups. In [36] Vargha and Delaney suggest that
A-test of greater than 0.64 (or less than 0.36) is indicative of
“medium” effect size, and of greater than 0.71 (or less than
0.29) can be indicative of a promising “large” effect size.

Both Figure 2 and Table 2 suggest that RSRepair has much
fewer NTCE, compared to GenProg. Figure 2 presents the
boxplots on NTCE when running the two tools to fix bugs
existing in the subject programs. Table 2 reports the detailed
statistical result on the measurement of NTCE. Obviously,

341

for most programs (23 of 24) in our experiment, NTCE of
RSRepair is much smaller than that of GenProg in terms of
Mean; the difference can be statistically significance using
Mann-Whitney-Wilcoxon test (p-value<0.05), in most cases
(22 of 23). What is more, it is reasonable to consider that
RSRepair reduces the NTCE efficiently in term of often
arriving at the promising “large” effect size (A-test>0.71 or
A-test<0.29).

Answer for RQ2: GenProg does not find a valid patch
faster than RSRepair. Oppositely, in most cases, GenProg
requires much more NTCE to repair faulty programs, leading
to the lower repair efficiency than RSRepair.

6. DISCUSSION

Intuitively, genetic programming, which uses fitness values
to guide the patch search process, should perform better, at
least not worse, compared to random search. Our experiment
results, however, suggest that genetic programming used by
GenProg, in most cases, does not perform better and even
worsens the search process with bigger NCP in the repair
process. Then, why does genetic programming, a fitness
evaluation directed search, perform worse than a purely
random search in our experiment?

We are not surprised for this experimental results. In fact,
Andrea Arcuri and Lionel Briand [4, Page 3] has presented
their concern to the effectiveness of genetic programming
used by GenProg, and considered that genetic programming
should be compared against random search to check the ef-

fectiveness, although it is mentioned that for many programs
random search is as effective as genetic programming [38].

The reason for the worse repair effectiveness by GenProg
may be tracked down from the paper [10]: current fitness
functions including that used by GenProg are either overly
simplistic or likely to exhibit “all-or-nothing” behavior, and
thus are not well correlated with true distance between an
individual and the global optimum. In our experiment we
found that for GenProg most candidate patches have the
same or similar fitness values even if some ones are very close
to valid patches. Furthermore, the fact of overwhelming
majority of valid patches are generated by the nearest Mutate
operation, rather than combined action of multi operations
in terms of patch evolution, further presents the evidences
that genetic programming does not work as well as we think
in the patch search process.

Since imprecise fitness functions have the chance of mis-
leading the search process, in our experimental evaluation it
should not be surprising that GenProg has the worse repair
effectiveness on many programs than RSRepair for which
random search is used.

Implication - Before applying some optimization algo-
rithm in search-based research area, we should ensure that
the fitness function used by this algorithm should have the
ability of computing, at least partly, the distance between
candidate solutions and optimal solutions.

7. THREATS TO VALIDITY

The main threats to the validity of our result belong to the
internal, external, and construct validity threat categories.

Internal validity threats correspond to the relationship
between the independent and dependent variables in the
study. One such threat is on the selection of subject programs
in our experiment. To save the time resource and simplify
the implementation of RSRepair, we excluded the programs
for which fixing bugs requires either too many test cases or
the modification of multi source files. In fact, the more test
cases shipped with subject programs, the more expensive
computational resource often required by fitness evaluations,
because the fitness values are computed by sampling these
test cases according to a fixed rate (10% for GenProg); More
expensive evaluations will reduce the benefit brought by
genetic programming, because no evidence indicates that
fitness evaluation based on more test cases can provide some
more accurate guidance for patch search in our experiment.
In addition, in the future we will investigate whether genetic
programming has the advantage over random search on fixing
bugs existing in multi files.

External validity is concerned with generalization. Since
we conducted our experiment only on programs each of
which comes with one bug, conclusions drawn from our paper
may not hold when some subject programs with multi bugs
are included in our experiment. To our knowledge, there
exists little work on fixing automatically faulty programs
shipping with multi bugs, because automated program repair
is generally considered to be a hard work [13]. When fixing
multi bugs in one program, the success rate can be too low,
making little sense for statistic analysis. In addition, in this
paper we focus only on the comparison between random
search and genetic programming, in our future work we plan
to study random search with the comparison on other repair
techniques such as [12, 5, 28].

342

Construct validity threats concern the appropriateness
of the evaluation measurement. We first use NCP as the
measurement to investigate whether genetic programming
has a good work at guiding the patch search process with
fewer repair trials. Then, we measure the repair efficiency of
genetic programming by the comparison between GenProg
and RSRepair according to NTCE. For the analysis to ex-
perimental results, rigorously statistical analysis including
Mann-Whitney-Wilcoxon test and A-test is used.

8. CONCLUSIONS

As an important optimization algorithm in the area of
SBSE, genetic programming has been applied successfully to
many fields within the general area of software engineering.
Recently, in the paper [40] genetic programming is proposed
to fix automatically the general bugs, and a prototype tool
called GenProg based on this technique is implemented. After
that, general automated program repair has gone from being
entirely unheard of to having its own multi-paper sessions,
such as “Program Repair” session in ICSE 2013, in many
top tier conferences [20], and many researchers justify the
advantage of their techniques, such as Par and SemFix, via
the comparison with GenProg. Furthermore, affected by
GenProg, Par also uses genetic programming to guide the
patch search in the way like GenProg.

Although GenProg and Par have presented their promis-
ing results, to what extent the patch search process benefits
from genetic programming is still unknown. Furthermore,
the question of whether the benefit brought by genetic pro-
gramming can balance the cost caused by fitness evaluations
is not addressed. In this paper, we try to investigate the two
questions via the performance comparison between genetic
programming and random search.

Experiment on 7 programs with 24 versions shipping with
real-life field failures suggest that 1) random search used by
RSRepair, in most cases (23/24), finds valid patches faster
(i-e., requiring fewer patch trials to find a valid patch) over
genetic programming used by GenProg, and 2) for most
programs (23/24), GenProg requires much more test case ex-
ecutions to find a valid patch over RSRepair, which indicates
that the benefit brought by genetic programming cannot bal-
ance the cost caused by fitness evaluations, and thus worsens
the patch search process. Complete experimental results in
this paper are available at:

http://qiyuhua.github.com/projects/rsrepair/

Based on experimental results, we challenge the research
community to develop novel repair techniques using opti-
mization algorithm to defeat the random search algorithm
presented in Algorithm 2 in terms of NCP and NTCE.

9. ACKNOWLEDGMENTS

I would like to acknowledge W. Weimer et al. for their
noteworthy work on GenProg, which has largely pushed for-
ward the advance of research area on general automated
program repair. This research was supported in part by
grants from National Natural Science Foundation of China
(Nos. 61379054, and 91318301), and National High Tech-
nology Research and Development Program of China (No.
2012AA011201).

10. REFERENCES
[1] T. Ackling, B. Alexander, and I. Grunert. Evolving

10

[11

12

[13

14

15

[16

]

]

]

]

|

]

patches for software repair. In Genetic and
Evolutionary Computation (GECCO), pages 1427-1434,
2011.

A. Arcuri. On the automation of fixing software bugs.
In International Conference on Software Engineering
(ICSE), pages 1003-1006, 2008.

A. Arcuri. Evolutionary repair of faulty software.
Applied Soft Computing, 11(4):3494 — 3514, 2011.

A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In International Conference on
Software Engineering (ICSE), pages 1-10, 2011.

A. Arcuri and X. Yao. A novel co-evolutionary
approach to automatic software bug fixing. In IEEE
Congress on Evolutionary Computation (CEC), pages
162-168, 2008.

V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes
from object behavior anomalies. In International
Conference on Automated Software Engineering (ASE),
pages 550-554, 2009.

V. Debroy and W. Wong. Using mutation to
automatically suggest fixes for faulty programs. In
International Conference on Software Testing,
Verification and Validation (ICST), pages 65 —74, 2010.
H. Do, G. Rothermel, and A. Kinneer. Empirical
studies of test case prioritization in a junit testing
environment. In International Symposium on Software
Reliability Engineering (ISSRE), pages 113 — 124, 2004.
S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering (TSE), 28(2):159
—182, feb 2002.

E. Fast, C. Le Goues, S. Forrest, and W. Weimer.
Designing better fitness functions for automated
program repair. In Genetic and Evolutionary
Computation (GECCO), pages 965-972, 2010.

Z. P. Fry, B. Landau, and W. Weimer. A human study
of patch maintainability. In International Symposium
on Software Testing and Analysis (ISSTA), pages
177-187, 2012.

A. Griesmayer, R. Bloem, and B. Cook. Repair of
boolean programs with an application to c. In
Computer Aided Verification (CAV), pages 358-371,
2006.

M. Harman. Automated patching techniques: the fix is
in: technical perspective. Communications of the ACM,
53(5):108-108, 2010.

M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys, 45(1):1-61,
Dec. 2012.

M. Harman, P. McMinn, J. Souza, and S. Yoo. Search
based software engineering: Techniques, taxonomy,
tutorial. Empirical Software Engineering and
Verification, 7007:1-59, 2012.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit.
Automated atomicity-violation fixing. In Programming
Language Design and Implementation (PLDI), pages
389-400, 2011.

343

[17]

18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

W. Jin and A. Orso. F3: fault localization for field
failures. In International Symposium on Software
Testing and Analysis (ISSTA), pages 213-223, 2013.
D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch
generation learned from human-written patches. In
International Conference on Software Engineering
(ICSE), pages 802-811, 2013.

B. Korel, G. Koutsogiannakis, and L. Tahat.
Application of system models in regression test suite
prioritization. In International Conference on Software
Maintenance (ICSM), pages 247 —256, 2008.

C. Le Goues. Automatic program repair using genetic
programming. PhD thesis, University of Virginia, 2013.
C. Le Goues, M. Dewey-Vogt, S. Forrest, and

W. Weimer. A systematic study of automated program
repair: fixing 55 out of 105 bugs for $8 each. In
International Conference on Software Engineering
(ICSE), pages 3-13, 2012.

C. Le Goues, S. Forrest, and W. Weimer. Current
challenges in automatic software repair. Software
Quality Journal, 21(3):421-443, 2013.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
GenProg: a generic method for automatic software
repair. IEEE Transactions on Software Engineering
(TSE), 38(1):54 —72, 2012.

C. Le Goues, W. Weimer, and S. Forrest.
Representations and operators for improving
evolutionary software repair. In Genetic and
Evolutionary Computation (GECCO), 2012.

P. Liu and C. Zhang. Axis: automatically fixing
atomicity violations through solving control constraints.
In International Conference on Software Engineering
(ICSE), pages 299-309, 2012.

M. Monperrus. A critical review of “automatic patch
generation learned from human-written patches” an
essay on the problem statement and the evaluation of
automatic software repair. In International Conference
on Software Engineering (ICSE), 2014 (To appear).

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and

S. Chandra. SemFix: program repair via semantic
analysis. In International Conference on Software
Engineering (ICSE), pages 772-781, 2013.

Y. Pei, Y. Wei, C. Furia, M. Nordio, and B. Meyer.
Code-based automated program fixing. In International
Conference on Automated Software Engineering (ASE),
pages 392 —395, 2011.

S. Poulding and J. A. Clark. Efficient software
verification: Statistical testing using automated search.
IEEFE Transactions on Software Engineering (TSE),
36(6):763-777, Nov. 2010.

Y. Qi, X. Mao, and Y. Lei. Efficient automated
program repair through fault-recorded testing
prioritization. In International Conference on Software
Maintenance (ICSM), pages 180-189, 2013.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. Does
genetic programming work well on automated program
repair? In International Conference on Computational
and Information Sciences (ICCIS), pages 1875-1878,
2013.

Y. Qi, X. Mao, Y. Lei, and C. Wang. Using automated
program repair for evaluating the effectiveness of fault
localization techniques. In International Symposium on

33]

[34]

[35]

[36]

[37]

[38]

Software Testing and Analysis (ISSTA), pages 191-201,
2013.

Y. Qi, X. Mao, Y. Wen, Z. Dai, and B. Gu. More
efficient automatic repair of large-scale programs using
weak recompilation. Science China Information
Sciences, 55(12):2785-2799, 2012.

G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering (TSE),
27(10):929 —948, oct 2001.

H. Samimi, M. Schiifer, S. Artzi, T. Millstein, F. Tip,
and L. Hendren. Automated repair of HTML
generation errors in php applications using string
constraint solving. In International Conference on
Software Engineering (ICSE), pages 277-287, 2012.

A. Vargha and H. D. Delaney. A critique and
improvement of the CL common language effect size
statistics of mcgraw and wong. Journal of Educational
and Behavioral Statistics, 25(2):101-132, 2000.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz,
B. Meyer, and A. Zeller. Automated fixing of programs
with contracts. In International Symposium on Software
Testing and Analysis (ISSTA), pages 61-72, 2010.

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen.
Automatic program repair with evolutionary

344

[39]

[40]

[41]

[42]

[43]

[44]

computation. Communications of the ACM,
53(5):109-116, 2010.

W. Weimer, Z. P. Fry, and S. Forrest. Leveraging
program equivalence for adaptive program repair:
models and first results. In International Conference on
Automated Software Engineering (ASE), pages 356-366,
2013.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In International Conference on Software
Engineering (ICSE), pages 364-374, 2009.

F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80 — 83, 1945.

X. Xije, T. Y. Chen, F.-c. Kuo, and B. Xu. A
theoretical analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Transactions
on Software Engineering and Methodology (TOSEM),
22(4):Article 31, 2013.

S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Softw. Test. Verif. Reliab, 22(4):67-120, 2012.

L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei.
Time-aware test-case prioritization using integer linear
programming. In International Symposium on Software
Testing and Analysis (ISSTA), pages 213-224, 20009.

